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Why Study Conformal Field Theories (CFTs)?

CFTs describe universal physics of scale invariant critical points:

continuous phase transitions in condensed matter and
statistical physics systems

fixed points of RG flows

Provide a handle on

Universal structure of the landscape of QFTs

Quantum gravity via the AdS/CFT correspondence and
holography

String theory

Black holes



The Conformal Bootstrap

Conformal bootstrap program seeks to systematically apply

conformal symmetry
crossing symmetry
unitarity/reflection positivity

to map out and solve the space of allowed CFTs

Figure: Upper bound on ∆ε as a function of ∆σ in 3d CFTs [El-Showk,
Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, ’12; ’14]



The Ultimate Dream

Owing to bootstrap: tremendous progress on the numerical
and analytic fronts! e.g. Ferrara et al. (1971, 1973), Dobrev et al. (1976, 1977), Polyakov

(1974), Dolan & Osborn (2001, 2004, 2011), Poland et al. (2012), Simmons-Duffin (2014), El-Showk et

al. (2014), Kos et al. (2014, 2015, 2016), Costa & Hansen (2015), Rejon-Barrera & Robbins (2016),

Echeverri et al. (2016), Costa et al. (2016), Fortin & Skiba (2016, 2019), Karateev et al. (2017), Poland

& Simmons-Duffin (2019)

Dream: to classify and solve the entire landscape of CFTs and
predict their observables

CFTs are signposts in the landscape of QFTs!
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Motivation for Studying Higher-Point Functions

So far, most results extracted by considering 4-point functions!

(for a review, see e.g. Poland, Rychkov and Vichi (2019))

⇒ Explicit expressions or recursion relations for conformal blocks
appearing in 4-point functions of scalars in arbitrary d

⇒ Rich variety of techniques for handling 4-point blocks in
arbitrary Lorentz representations



Motivation for Studying Higher-Point Functions (cont.)

Many reasons to desire a precise understanding of 5- and
higher-point functions!

1 Multipoint bootstrap Rosenhaus (2018), Parikh (2019), Bercini et al. (2021), Antunes et

al. (2021)

2 Better access to different physical regimes of a CFT

3 New probe into 〈OHOHOH〉 in holographic CFTs via 5-point
object 〈OLOLOHOLOL〉

4 Improved understanding of CFT implications of the ANEC



What is Known So Far

A few key developments include

Five-point scalar exchange conformal blocks first computed by
Rosenhaus (2018)

Holographic representations of higher-point conformal blocks
constructed by Parikh (2019, 2020) and Hoback and Parikh
(2021)

Dimensional reduction formulae for higher-point scalar
exchange blocks derived by Hoback and Parikh (2020)

General representations of higher-point scalar exchange blocks
developed by Fortin, Ma, Skiba (2019, 2020) using the
operator product expansion (OPE) in embedding space



What is Known So Far (cont.)

Few explicit results for higher-point conformal blocks
capturing exchange of spinning operators exist

Exception: Series expansion for general 5-point blocks with
identical external scalars developed by Gonçalves et al. (2019)

Lightcone blocks for five- and six-point functions in the
snowflake channel obtained by Antunes et al. (2021)

Multipoint comb channel blocks obtained in 3D and 4D via a
connection to Gaudin integrable models by Buric et al. (2021)



Goal of this Work

Here we seek to

Identify a simple and practical approach to computing 5-point
blocks

Improve and extend our understanding of 5-point blocks by
deriving simple recursion relations

We

Consider scalar 5-point function 〈φ∆1φ∆2Φ∆3φ∆4φ∆5〉
Compute the conformal block for arbitrary symmetric traceless
tensor exchange in (12) and (45) OPEs

Our results

May be seen as a natural generalization of recursion relations
for 4-point blocks obtained by Dolan & Osborn (2011)



Setting the Stage: 5-point Functions

Work in the index-free embedding formalism of Costa et al.
(2011)

Restrict to parity-even correlators only

Label spin-` primaries by χ ≡ [∆, `]

Conformal invariance fixes 5-point function of spin-` primaries to
have the form

〈O1(X1;Z1) · · · O5(X5;Z5)〉 =
5∏

i<j

X
−αij

ij

∑
k

fk(ua)Q(k)
χ1,...,χ5

({Xi ;Zi}) ,

where Xij = −2Xi · Xj and

αij =
1

3

(
τi + τj −

1

4

5∑
k=1

τk

)
with τi = ∆i + `i



Setting the Stage: 5-point Functions (cont.)

In this form,

Factors Xij carry powers fixed by homogeneity

fk(ua) is some function of the conformal cross-ratios ua

Polynomials Q(k) have weight `i in each point Xi , degree `i in
each Zi

Q(k) must be identically transverse, i.e.

Q(k)
χ1,...,χ5

({λiXi ;αiZi + βiXi}) = Q(k)
χ1,...,χ5

({Xi ;Zi})
∏
i

(λiαi )
`i

Q(k) constructed from basic building blocks

Vi ,jk

Hij

of the standard box tensor basis



Setting the Stage: 5-point Conformal Blocks

May expand
∑

k

[
. . .
]

in a basis of conformal blocks, which

Capture the exchange of specific primary operators in the
OPE

Are the building blocks of CFT correlation functions

Effectively encode the kinematical contribution of descendant
operators in terms of primary operators

Choose to compute blocks in double OPE channel (12)(45)



Setting the Stage: 5-point Conformal Blocks (cont.)

Consider the scalar 5-point function

〈φ∆1(X1)φ∆2(X2)Φ∆3(X3)φ∆4(X4)φ∆5(X5)〉

Insert a projector |O∆,`| onto the conformal multiplet of O∆,`

(similarly for O′∆′,`′) into the 5-point function

|O| ≡ 1

NO

∫
DdX |O(X )〉〈Õ(X )|

Each 3-point function 〈O∆,`Φ∆3O′∆′,`′〉 expanded in a basis of
tensor structures

Tensor structures labeled by index a

Each comes with an independent coefficient λaO∆,`Φ∆3
O′

∆′,`′



Setting the Stage: 5-point Conformal Blocks (cont.)

This gives

〈φ∆1(X1)φ∆2(X2)|O∆,`|Φ∆3(X3)|O′∆′,`′ |φ∆4(X4)φ∆5(X5)〉 =∑
a

λφ∆1
φ∆2
O∆,`

λaO∆,`Φ∆3
O′

∆′,`′
λφ∆4

φ∆5
O′

∆′,`′
W

(a)
∆,`,∆′,`′;∆i

(Xi ) ,

where
W

(a)
∆,`,∆′,`′;∆i

(Xi ) = P∆i
(Xi )G

(a)
∆,`,∆′,`′(ui )

The object W
(a)
∆,`,∆′,`′;∆i

(Xi ) is comprised of

external-dimension-dependent prefactor P∆i
(Xi )

5-point conformal block for arbitrary symmetric traceless

exchange [∆, `], [∆′, `′]: G
(a)
∆,`,∆′,`′(ui )



Setting the Stage: 5-point Conformal Blocks (cont.)

In 5-point case,

There are generically five independent conformal cross-ratios
ui for d ≥ 3

Can make different choices of basis for ui

Multiple forms for P∆i
(Xi ) exist



Our Conventions

Various conventions for the leg factor and cross-ratios exist in the
literature, e.g. in Parikh (2019)

P∆i (Xi ) =

(
X25

X15X12

)∆1
2
(

X14

X15X45

)∆5
2
(

X15

X12X25

)∆2
2
(

X15

X13X35

)∆3
2
(

X15

X14X45

)∆4
2

,

where

u1 =
X12X35

X25X13
, u2 =

X13X45

X35X14
, w2;3 =

X15X23

X25X13
, w2;4 =

X15X24

X25X14
, w3;4 =

X15X34

X35X14

⇒ Here we choose to work in a convention-independent way as
much as possible.



How to Compute the Blocks?

Some prominent methods for computing conformal blocks are

Conformal integral approach (e.g. Dolan & Osborn (2001, 2004),

Simmons-Duffin (2012))

Conformal Casimir equation (e.g. Dolan & Osborn (2004, 2011),

Isachenkov & V. Schomerus (2016), Kravchuk (2018))

Weight-Shifting operator formalism (e.g. Karateev et al. (2017),

Costa & Hansen (2018), Kravchuk & Simmons-Duffin (2018), Karateev

et. al. (2018), Albayrak et. al. (2020))

We choose the weight-shifting formalism, which

Empowers us to derive a set of recursion relations for

generating G
(a)
∆,`,∆′,`′(ui )



The Weight-Shifting Operator Formalism

This formalism (due to Karateev et al. (2017) ) introduces a

Large class of conformally-covariant differential operators

⇒ These operators may be used to relate correlation functions of
operators in different representations of the conformal group

⇒ Method enables determination of seed conformal blocks as
well as more general blocks

⇒ Allows for efficient derivation of recursion relations



The Weight-Shifting Operators

Weight-Shifting operators

⇒ Correspond to tensor products of different finite-dimensional
representations W

Each set {D(v)A
x } associated with a particular W

A = 1, . . . , dimW is an index for W

v refers to a weight vector of W
E.g. W may be the fundamental vector representation
W = V = �



The Weight-Shifting Operators (cont.)

In particular,

D(v)A
x : [∆, ρ]→ [∆− δ∆v , λ] associated with W for generic

∆ are in one-to-one correspondence with irreducible
components of W∗ ⊗ V∆,ρ

where V∆,ρ is the representation under which O(x) transforms

⇒ Action of D(v)A
x on O(x): to shift the weights of O by the

weights of v , while introducing a free A index

For example, to increase or decrease the spin or dimension of O



The Weight-Shifting Operators (cont.)

May construct such operators explicitly in the embedding
space formalism

Focus on case of symmetric traceless tensors of SO(d)

For vector representation W = V, can build {D(δ∆,δ`)A
X } which map

D(−0)A
X : [∆, `]→ [∆− 1, `] ,

D(0+)A
X : [∆, `]→ [∆, `+ 1] ,

D(0−)A
X : [∆, `]→ [∆, `− 1] ,

D(+0)A
X : [∆, `]→ [∆ + 1, `] .



Crossing Relations for Weight-Shifting Operators

A crucial aspect is that

Such operators obey a type of crossing relation

Comes in two varieties: two- and three-point

Role: to relate action of weight-shifting operators at different
points

Symbolize a weight-shifting differential operator by

D(a)A
X = a

O

O′

W (1)



2-point Crossing Relation

Represent a conformally-invariant 2-point structure by

〈O1(X1)O2(X2)〉 = O1 O2

Acting with a weight-shifting operator on 〈O1(X1)O2(X2)〉 gives a
crossing relation

mO† O′

W

O
=

{
O†
O′
}(m)

(m̄)
m̄O† O′

W

O′†

which corresponds to

D(m)A
X2
〈O(X1)O(X2)〉 =

{
O†
O′
}(m)

(m̄)

D(m̄)A
X1
〈O′(X1)O′(X2)〉

where m̄ denotes shift opposite to m



3-point Crossing Relation

Represent a conformally invariant 3-point structure by the vertex

〈O1(X1)O2(X2)O3(X3)〉(a) = a

O1

O2

O3
,

where a enumerates all singlets in (ρ1 ⊗ ρ2 ⊗ ρ3)SO(d−1)



3-point Crossing Relation (cont.)

Again, acting on 〈O1(X1)O2(X2)O3(X3)〉(a) with a weight-shifting
operator gives a crossing relation

a m

O1

O2 O3

W

O′3
=

∑
O′1,b,n

{
O1 O2 O′1
O3 W O′3

}(a)(m)

(b)(n)

b

n

O1

O2 O3

W

O′1

which corresponds to

D(m)A
X3
〈O1(X1)O2(X2)O′3(X3)〉(a)

=
∑
O′1,b,n

{
O1 O2 O′1
O3 W O′3

}(a)(m)

(b)(n)

D(n)A
X1
〈O′1(X1)O2(X2)O3(X3)〉(b)

⇒ Coefficients − Racah coefficients or 6j symbols



3-point Crossing Relation (cont.)

Three-point crossing relation is

⇒ Effectively a change-of-basis equation between different bases
of covariant 3-point structures

Bases generated by the action of a weight-shifting operator at
a given point X1 or X3

Sum over O′1 is finite, ranging over the operators in O1 ⊗W

Relation reduces to 2-point variety if O2 = 1

⇒ Relation empowers us to move weight-shifting operators from
one leg (operator) to another

⇒ Main computational tool in the formalism!



Bubble Coefficients

If we contract both sides of the 3-point relation D(n)
X1 A

, find

D(n)
X1 AD

(m)A
X3
〈O1(X1)O2(X2)O′3(X3)〉(a)

=
∑
O′1,b,p

{
O1 O2 O′1
O3 W O′3

}(a)(m)

(b)(p)

D(n)
X1 AD

(p)A
X1
〈O′1(X1)O2(X2)O3(X3)〉(b) .

⇒ RHS features two contracted weight-shifting operators acting
at the same point!



Bubble Coefficients (cont.)

Composition D(n)
X1 A
D(p)A

X1
corresponds to a bubble diagram:

D(n)
X1 A
D(p)A

X1
=

O′1

p

n

O′′1

WO1
=

(
O′1
O1 W

)(n)(p)

δO′1O′′1



Gluing 3-point Functions to Form Conformal Blocks

Standard way to encode a conformal block:

Conformal integral of product of 3-point functions

E.g. scalar exchange block in a purely scalar 4-point function has
the form

1

NO

∫
DdXDdY 〈φ∆1 (X1)φ∆2 (X2)O(X )〉 1

(−2X · Y )d−∆
〈O(Y )φ∆3 (X3)φ∆4 (X4)〉

∣∣∣∣
M

with M = e2πiϕ denoting the projection onto the appropriate
monodromy invariant subspace



Gluing 3-point Functions to Form Conformal Blocks (cont.)

In the weight-shifting formalism (Karateev et al. (2017) ),

Operation which “glues” the 3-point correlators
〈φ∆1(X1)φ∆2(X2)O(X )〉 and 〈O(Y )φ∆3(X3)φ∆4(X4)〉
together

Symbolized by

|O〉 ./ 〈O| ≡ 1

NO

∫
DdXDdY |O(X )〉 1

(−2X · Y )d−∆
〈O(Y )|

= O O .

For spinning operators,

O∆,ρ to be glued to representation with which it has a
nonvanishing 2-point function



Gluing 3-point Functions to Form Conformal Blocks (cont.)

In terms of this notation, a general 4-point conformal block is
given by

W ab ≡ 〈O1O2O〉(a) ./ (b)〈O†O3O4〉 = a b

O1

O2 O3

O4

O†O



General Strategy

Our overall strategy involves

⇒ Acting with specific combinations of weight-shifting operators
on a given conformal block

⇒ Then applying the two- and three- point crossing relations as
needed

Goal: to re-express the original block in terms of

linear combinations of lower-spin blocks with shifted external
and, potentially, exchanged dimensions



General Strategy (cont.)

To implement such forms, require a mechanism for integrating
by parts

This is the statement

|D(c)AO〉 ./ 〈O′†| =
∑
m

{
O† 1 O′†
O′ W O

}·(c)

·(m)

|O〉 ./ 〈D(m)AO′†|

Empowers us to move the weight-shifting operators from one
side of the ./ to the other!



Recursion Relations from Weight-Shifting Operators:
Four-Point Case

Describe the basic procedure for extracting recursion relations:

Four-point scalar conformal blocks defined as

〈φ∆1 (X1)φ∆2 (X2)|O∆,`|φ∆3 (X3)φ∆4 (X4)〉 =
1

(X12)
1
2

(∆1+∆2)(X34)
1
2

(∆3+∆4)

×
(
X24

X14

)∆12/2(
X14

X13

)∆34/2

G∆,`(u, v),

where ∆ij = ∆i −∆j

Act on this object with the combination of operators

−2(D(−0)
X1
· D(−0)

X4
) = −2X1 · X4 = X14



Recursion Relations from Weight-Shifting Operators:
Four-Point Case (cont.)

Gives a 4-point function with ∆1 → ∆1− 1 and ∆4 → ∆4− 1

Shifts in ∆1 and ∆4 ⇒ a shifted external prefactor

Absorb it into u−1/2

Next, apply

⇒ three-point crossing relation

⇒ integration-by-parts rule

In three-point rule, sum over

�⊗ [∆, `] = [∆− 1, `]⊕ [∆, `+ 1]⊕ [∆, `− 1]⊕ [∆ + 1, `] + . . . .



Recursion Relations from Weight-Shifting Operators:
Four-Point Case (cont.)

Result is the familiar recursion relation due to Dolan and Osborn:

G∆,`(u, v) =
1

s(14)

(
u−1/2G∆,`−1(u, v)

∣∣∣∣
∆1→∆1+1,∆4→∆4+1

− G∆−1,`−1(u, v)

−t(14)G∆,`−2(u, v)− u(14)G∆+1,`−1(u, v)

)

⇒ This is Eq. (4.18) in Dolan & Osborn (2011)

Now wish to generalize this analysis to 5-point functions!



Mapping out the Derivation of the 5-point Recursion
Relations

Basic idea: to express 5-point conformal block for ([∆, `], [∆′, `′])
exchange in terms of lower-spin blocks

As before, act on 5-point function

〈φ∆1
(X1)φ∆2

(X2)|O∆,`|Φ∆3
(X3)|O′∆′,`′ |φ∆4

(X4)φ∆5
(X5)〉

= 〈φ∆1
(X1)φ∆2

(X2)O∆,`〉 ./ 〈O∆,`Φ∆3
(X3)O′∆′,`′ 〉 ./ 〈O

′
∆′,`′φ∆4

(X4)φ∆5
(X5)〉

=
∑
a

∑
O∆,`

∑
O′

∆′,`′

λφ∆1
φ∆2
O∆,`

λaO∆,`Φ∆3
O′

∆′,`′
λφ∆4

φ∆5
O′

∆′,`′
W

(a)
∆,`,∆′,`′;∆i

(Xi )

With weight-shifting operator combination

−2(D(−0)
X1
· D(−0)

X3
)〈φ∆1

(X1)φ∆2
(X2)|O∆,`|Φ∆3

(X3)|O′∆′,`′ |φ∆4
(X4)φ∆5

(X5)〉

= X13〈φ∆1
(X1)φ∆2

(X2)|O∆,`|Φ∆3
(X3)|O′∆′,`′ |φ∆4

(X4)φ∆5
(X5)〉



Mapping out the Derivation of the 5-point Recursion
Relations (cont.)

Consider

〈φ∆1 (X1)φ∆2 (X2)O∆,`〉 ./ 〈O∆,`Φ∆3 (X3)O′∆′,`′〉 ./ 〈O′∆′,`′φ∆4 (X4)φ∆5 (X5)〉

Apply three-point crossing relation to 〈φ∆1(X1)φ∆2(X2)O∆,`〉:

D(−0)A
X1

〈φ∆1 (X1)φ∆2 (X2)O∆,`(XI )〉 = A(−0)
(+0)D

(+0)A
XI
〈φ∆1−1(X1)φ∆2 (X2)O∆−1,`(XI )〉

+A(−0)
(0−)D

(0−)A
XI

〈φ∆1−1(X1)φ∆2 (X2)O∆,`+1(XI )〉

+A(−0)
(0+)D

(0+)A
XI
〈φ∆1−1(X1)φ∆2 (X2)O∆,`−1(XI )〉

+A(−0)
(−0)D

(−0)A
XI

〈φ∆1−1(X1)φ∆2 (X2)O∆+1,`(XI )〉

May extract 6j symbols A(−0)
(n) by

Acting on both sides with D(n̄)
XI A

(n̄ has shift opposite to n)

Noting ∃ only one nonzero bubble coefficient on RHS

Isolating A(−0)
(n)



Mapping out the Derivation of the 5-point Recursion
Relations (cont.)

Next step is

To push each of the operators D(n)A
XI

through the shadow
integral

For this, invoke integration-by-parts rule to move D(n)A
XI

across ./!

For example, for D(+0)A
XI

|D(+0)A
XI

O∆−1,`〉 ./ 〈O∆,`| = B(+0)(−0)|O∆−1,`〉 ./ 〈D
(−0)A
XI

O∆,`|



Mapping out the Derivation of the 5-point Recursion
Relations (cont.)

At this point, arrive at

D(−0)A
X1

〈φ∆1
(X1)φ∆2

(X2)O∆,`(XI )〉 ./ 〈O∆,`(XI )Φ∆3
(X3)O′∆′,`′ (XJ )〉(a) =

A(−0)
(+0)

B(+0)(−0)〈φ∆1−1(X1)φ∆2
(X2)O∆−1,`(XI )〉 ./ D(−0)A

XI
〈O∆,`(XI )Φ∆3

(X3)O′∆′,`′ (XJ )〉(a)

+A(−0)
(0−)

B(0−)(0+)〈φ∆1−1(X1)φ∆2
(X2)O∆,`+1(XI )〉 ./ D(0+)A

XI
〈O∆,`(XI )Φ∆3

(X3)O′∆′,`′ (XJ )〉(a)

+A(−0)
(0+)

B(0+)(0−)〈φ∆1−1(X1)φ∆2
(X2)O∆,`−1(XI )〉 ./ D(0−)A

XI
〈O∆,`(XI )Φ∆3

(X3)O′∆′,`′ (XJ )〉(a)

+A(−0)
(−0)

B(−0)(+0)〈φ∆1−1(X1)φ∆2
(X2)O∆+1,`(XI )〉 ./ D(+0)A

XI
〈O∆,`(XI )Φ∆3

(X3)O′∆′,`′ (XJ )〉(a)

Next apply the three-point relation again!

⇒ Purpose: to move the action of D(n)A
XI

from the internal point
XI to the external point X3!

Shifts [∆3 − δ∆n,−δ`n] take on values in

�⊗ [∆3, 0] = [∆3 − 1, 0]⊕ [∆3, 1]⊕ [∆3 + 1, 0]



Mapping out the Derivation of the 5-point Recursion
Relations (cont.)

At this stage, recall that

D(−0)A
X1

is contracted with D(−0)
X3 A

in our combination of choice

⇒ So all bubble coefficients on RHS vanish except for one,

D(−0)
X3 A
D(+0)A

X3

Label a enumerates constituent 3-point tensor structures of
〈O∆,`Φ∆3O′∆′,`′〉, i.e. 〈O∆,`Φ∆3O′∆′,`′〉(a)

Parameterize structures by the index nIJ : 0 ≤ nIJ ≤ min(`, `′)



Mapping out the Derivation of the 5-point Recursion
Relations (cont.)

Extracting relevant 6j symbols and combining everything, obtain

−2(D(−0)
X1
· D(−0)

X3
)W

(nIJ )
∆,`,∆′,`′;∆1,∆2,∆3,∆4,∆5

=

− 2b
(−0)(+0)
Φ

(
A(−0)

(+0)
B(+0)(−0)B

nIJ (−0)
nIJ (+0)

W
(nIJ )
∆−1,`,∆′,`′;∆1−1,∆2,∆3−1,∆4,∆5

+

nIJ+1∑
mIJ=nIJ

A(−0)
(0−)

B(0−)(0+)B
nIJ (0+)
mIJ (+0)

W
(mIJ )
∆,`+1,∆′,`′;∆1−1,∆2,∆3−1,∆4,∆5

+

nIJ+1∑
mIJ=nIJ−1

A(−0)
(0+)

B(0+)(0−)B
nIJ (0−)
mIJ (+0)

W
(mIJ )
∆,`−1,∆′,`′;∆1−1,∆2,∆3−1,∆4,∆5

+

nIJ+2∑
mIJ=nIJ−1

A(−0)
(−0)

B(−0)(+0)B
nIJ (+0)
mIJ (+0)

W
(mIJ )
∆+1,`,∆′,`′;∆1−1,∆2,∆3−1,∆4,∆5

)



Mapping out the Derivation of the 5-point Recursion
Relations (cont.)

⇒ Evidently a recursion relation in spin `, with `′ held fixed!

Next apply analogous approach to the other spin:

−2(D(−0)
X3
· D(−0)

X5
)〈φ∆1

(X1)φ∆2
(X2)|O∆,`|Φ∆3

(X3)|O′∆′,`′ |φ∆4
(X4)φ∆5

(X5)〉

= X35〈φ∆1
(X1)φ∆2

(X2)|O∆,`|Φ∆3
(X3)|O′∆′,`′ |φ∆4

(X4)φ∆5
(X5)〉

Mirror image of the above procedure with

∆↔ ∆′

`↔ `′

∆12 → −∆45



Main Results

For convenience, adopt shorthand notation

G
(n)

(`,`′;δ0,δ
′
0)
≡ G

(n)

∆+δ0,`,∆′+δ′0,`
′ (ui )

Shifting ∆3 → ∆3 + 1, and ∆1 → ∆1 + 1, `→ `− 1; ∆5 → ∆5 + 1, `′ → `′ − 1,
obtain the set

(1) G
(nIJ )
(`,`′;0,0)

=
1

snIJ

(
f (ui )G

(nIJ )
(`−1,`′;0,0)

∣∣∣∣
∆1→∆1+1,∆3→∆3+1

− G
(nIJ )
(`−1,`′;−1,0)

− snIJ+1G
(nIJ+1)
(`,`′;0,0)

−tnIJ−1G
(nIJ−1)
(`−2,`′;0,0)

− tnIJG
(nIJ )
(`−2,`′;0,0)

− tnIJ+1G
(nIJ+1)
(`−2,`′;0,0)

−unIJ−1G
(nIJ−1)
(`−1,`′;1,0)

− unIJG
(nIJ )
(`−1,`′;1,0)

− unIJ+1G
(nIJ+1)
(`−1,`′;1,0)

− unIJ+2G
(nIJ+2)
(`−1,`′;1,0)

)
and

(2) G
(nIJ )
(`,`′;0,0)

=
1

s′nIJ

(
f ′(ui )G

(nIJ )
(`,`′−1;0,0)

∣∣∣∣
∆3→∆3+1,∆5→∆5+1

− G
(nIJ )
(`,`′−1;0,−1)

− s′nIJ+1G
(nIJ+1)
(`,`′;0,0)

−t′nIJ−1G
(nIJ−1)
(`,`′−2;0,0)

− t′nIJG
(nIJ )
(`,`′−2;0,0)

− t′nIJ+1G
(nIJ+1)
(`,`′−2;0,0)

−u′nIJ−1G
(nIJ−1)
(`,`′−1;0,1)

− u′nIJG
(nIJ )
(`,`′−1;0,1)

− u′nIJ+1G
(nIJ+1)
(`,`′−1;0,1)

− u′nIJ+2G
(nIJ+2)
(`,`′−1;0,1)

)



Discussion of Results

Relations defined in a convention-independent way:

f (ui ) and f ′(ui ) represent cross-ratio-dependent prefactors

e.g. for the set of conventions in Parikh (2019)

f (ui ) = (u1)−1/2, f ′(ui ) = (u2)−1/2

Coefficients − products of the various 6j symbols

May regard above relations as two independent results:

One re-expresses a block for [∆, `], [∆′, `′] exchange in terms
of {(`, `′), (`− 1, `′), (`− 2, `′)}

The other does the same for `′, with ` held fixed



Discussion of Results (cont.)

Remark: All terms on RHS have lower spins except

snIJ+1 and s ′nIJ+1

But these have a larger 3-point structure index, nIJ + 1 and vanish
only

snIJ+1: at maximum value nIJ = min(`− 1, `′) = `′ for `′ < `

s ′nIJ+1: at maximum value nIJ = min(`, `′ − 1) = ` for ` < `′

Observe: Case ` = `′ and nIJ = `− 1 missing here

Need additional relation for this!



Discussion of Results (cont.)

Hence, generate the blocks as follows:

If `′ ≤ `, start from the seed nIJ = `′ and iterate (1) until
`′ > `

If ` ≤ `′, start from the seed nIJ = ` and iterate (2) until
` > `′

If `′ = ` and nIJ = `− 1, use special recursion relation

(combine with action of −2(D(−0)
X1
· D(−0)

X5
))

Thus, can use these relations together

⇒ to recursively generate 5-point conformal blocks for arbitrary
[`, `′] exchange, starting from the seeds ` = `′ = 0

To sum up:

Given an explicit prescription for arbitrary [`, `′] exchange
5-point blocks



Promoting Φ∆3
to a Spinning Operator: Spin 1

Seek to promote the middle operator Φ∆3 to a spinning operator

Simplest case: Φ∆3 to vector operator

Goal:

To cast (O∆,`,O′∆′,`′) exchange block in terms of seed blocks
for purely scalar 5-point function

In

〈φ∆1 (X1)φ∆2 (X2)O∆,`〉 ./ 〈O∆,`Φ∆3 (X3)O′∆′,`′〉 ./ 〈O′∆′,`′φ∆4 (X4)φ∆5 (X5)〉

Need to take 〈O∆,`Φ∆3(X3)O′∆′,`′〉 → 〈O∆,`v
A(X3)O′∆′,`′〉



Promoting Φ∆3
to a Spinning Operator: Spin 1 (cont.)

Have 3 distinct classes of constituent 3-point structures:

Q(`,1,`′)(X1,X2,X3;Z1,Z2,Z3) =
3∑

i=1

λi ,nIJQ
(i ,nIJ)
(`,1,`′) ,

where

Q
(i,nIJ )
(`,1,`′) =

q
(i,nIJ )
(`,1,`′)

(X12)
1
2

(∆+∆3−∆′+`−`′+1)(X13)
1
2

(∆−∆3+∆′+`+`′−1)(X23)
1
2

(−∆+∆3+∆′−`+`′+1)

with

q
(1,nIJ )
(`,1,`′) = V

`−nIJ
1 V2V

`′−nIJ
3 H

nIJ
13 ,

q
(2,nIJ )
(`,1,`′) = V

`−nIJ
1 V

(`′−1)−nIJ
3 H

nIJ
13 H23 ,

q
(3,nIJ )
(`,1,`′) = V

(`−1)−nIJ
1 V

`′−nIJ
3 H12H

nIJ
13 .

Remark:

i = 1 exist for nIJ ∈ [0,min(`, `′)]

i = 2 exist for nIJ ∈ [0,min(`, `′ − 1)]

i = 3 exist for nIJ ∈ [0,min(`− 1, `′)]



Promoting Φ∆3
to a Spinning Operator: Spin 1 (cont.)

Consider the quantity

W
(V )(i,nIJ )
∆,`;∆′,`′;∆1,∆2,∆3,∆4,∆5

= 〈φ∆1
(X1)φ∆2

(X2)O∆,`〉 ./ Q
(i,nIJ )
(`,1,`′) ./ 〈O

′
∆′,`′φ∆4

(X4)φ∆5
(X5)〉

i enumerates the 3 distinct classes

nIJ parameterizes different possible structures within each
class

Start by expressing Q
(i ,nIJ)
(`,1,`′) for fixed i in terms of the basis

{(D(−0)
X · D(0+)

X3
), (D(+0)

X · D(0+)
X3

), (D(0−)
X · D(0+)

X3
), (D(0+)

X · D(0+)
X3

)}

for either X = XI or X = XJ



Promoting Φ∆3
to a Spinning Operator: Spin 1 (cont.)

Here we

Choose D(0+)
X3

to raise spin of Φ∆3 to 1

For example, for X = XI

(D(−0)
XI
· D(0+)

X3
)〈O∆+1,`(XI )Φ∆3

(X3)O∆′,`′ (XJ)〉(nIJ )

=α1Q
(1,nIJ )
(`,1,`′) + β1Q

(2,nIJ )
(`,1,`′) + γ1Q

(3,nIJ )
(`,1,`′)

Now, since only three distinct 3-point structures

⇒ just need three equations:

{(D(−0)
XI
· D(0+)

X3
), (D(+0)

XI
· D(0+)

X3
), (D(0−)

XI
· D(0+)

X3
)}

reuse these multiple times to generate set involving

Q
(i ,nIJ−1)
(`,1,`′) ,Q

(i ,nIJ)
(`,1,`′), and Q

(i ,nIJ+1)
(`,1,`′)

then solve for structures



Promoting Φ∆3
to a Spinning Operator: Spin 1 (cont.)

We next apply

three-point crossing relation (a variety that holds ` fixed)

integration-by-parts rule

to obtain a set of recursion relations for

W
(V )(i ,nIJ)
∆,`;∆′,`′;∆1,∆2,∆3,∆4,∆5

, i = 1, 2, 3

E.g.

W
(V )(2,nIJ )

∆,`;∆′,`′ ;∆1,∆2,∆3,∆4,∆5
=

(nIJ − `)
(
nIJ − `′ + 1

)
(nIJ + 1) (∆′ − ∆ + ∆3 − 2nIJ + `′ + `− 1)

W
(V )(2,nIJ+1)

∆,`;∆′,`′ ;∆1,∆2,∆3,∆4,∆5

+

nIJ+2∑
m=nIJ

B
(1)(m)
(+0)(0+)

(D(+0)
X1
· D(0+)

X3
)W

(m)

∆,`,∆′,`′ ;∆1−1,∆2,∆3,∆4,∆5

+ B
(2)(m)
(+0)(0+)

(D(+0)
X2
· D(0+)

X3
)W

(m)

∆,`,∆′,`′ ;∆1,∆2−1,∆3,∆4,∆5

+ B
(1)(m)
(−0)(0+)

(D(−0)
X1
· D(0+)

X3
)W

(m)

∆,`,∆′,`′ ;∆1+1,∆2,∆3,∆4,∆5

+ B
(2)(m)
(−0)(0+)

(D(−0)
X2
· D(0+)

X3
)W

(m)

∆,`,∆′,`′ ;∆1,∆2+1,∆3,∆4,∆5



Comment on Spin 2 Promotion

To promote Φ∆3 to a spin-2 operator TAB ,

Follow exactly analogous procedure

May recycle much of the spin-1 calculation

Take W
(V )(i ,nIJ)
∆,`;∆′,`′;∆1,∆2,∆3,∆4,∆5

as the seed blocks



The Averaged Null Energy Condition (ANEC): An
Application

All QFTs known to respect a special positivity condition:

averaged null energy condition (ANEC)
Hofman & Maldacena (2008), Faulkner et al. (2016), Hartman et al. (2016)

which states that the energy flux operator

E =

∫ ∞
−∞

dx− T−−(x−, 0) ,

where the integral is over a complete null line, satisfies

〈Ψ|E|Ψ〉 ≥ 0

We ask:

Can we get novel constraints on OPE coefficients by studying
ANEC positivity in five-point functions?



The Averaged Null Energy Condition (ANEC): An
Application (cont.)

Possible application of our results:

May use the OPE to compute the expectation value of the
ANEC operator in bilocal states φ(x1)φ(x2)|0〉, encoded in
〈φiφjTµνφiφj〉 and demand positivity

Expect OPE limit x12, x45 → 0 to be dominated by stress
tensor or low-dimension scalars

May consider smeared states of the form

|φiφj〉f =

∫
ddx1

∫
ddx2 f (x1, x2)φi (x1)φj(x2)|0〉

with f chosen to have support such that convergence of the
φi × φj OPE is preserved

E.g. f (x1, x2) ∝ e−iq(t1+t2) to correspond to approximate
energy eigenstates

Cordova et al. (2017), Meltzer et al. (2018)



The Averaged Null Energy Condition (ANEC): An
Application (cont.)

May analyze more general mixed states created by linear
combinations of operators

E.g. consider mixing with a state

|T (q, ε)〉 = N

∫
ddx e−iqtεµνT

µν(x)|0〉

Mixed state α1|φiφj〉f + α2|T (q, ε)〉
Evaluating energy one-point function gives 2× 2 matrix:(

f 〈φiφj |E|φiφj〉f f 〈φiφj |E|T (q, ε)〉
〈T (q, ε)|E|φiφj〉f 〈T (q, ε)|E|T (q, ε)〉

)
< 0

Require this to be positive-definite ⇒ stronger constraints



Ongoing Work: Moving Beyond 5-point Blocks

Apply similar methods to determine 6-point blocks in the
snowflake channel for scalar 6-point functions

G
(m)
∆,`;∆′,`′;∆′′,`′′

∣∣∣∣
snowflake

∝ 〈φ∆1(X1)φ∆2(X2)O∆,`〉

./ 〈O∆,`O∆′,`′O∆′′,`′′〉(m) ./ 〈O∆′,`′φ∆3(X3)φ∆4(X4)〉
./ 〈O∆′′,`′′φ∆5(X5)φ∆6(X6)〉

Main difference: 3-point structure of type spin-spin-spin
〈O∆,`O∆′,`′O∆′′,`′′〉(m)

⇒ Consequence: Require differential operators (D(+0)
X1
· D(−0)

X6
)

⇒ Have two types of relations
One spin varying: with differential operators
Two spins varying: without differential operators

⇒ Multiple special cases



Ongoing Work: The 5-point Conformal Bootstrap

Goal: to implement the bootstrap on the 3D critical Ising model by
using results for 5-point (and later 6-point) blocks Gliozzi (2013)

E.g. 〈σ(x1)σ(x2)ε(x3)σ(x4)σ(x5)〉 can be expanded in the
(12)(45) OPE, the (14)(25) OPE, the (13)(45) OPE

Truncate the CFT at some level N by including the first N
conformal blocks

Apply a numerical bootstrap method to extract CFT data

Only works for a truncable CFT - limitation!

Hope to obtain new OPE coefficients



Conclusions

Presented a concrete and practical approach to computing
general symmetric traceless exchange conformal blocks
appearing in 5-point functions of arbitrary scalar operators

Derived a simple set of recursion relations using the
weight-shifting formalism

Relations allow to reduce symmetric traceless blocks to linear
combinations of scalar exchange blocks with shifted
dimensions



Conclusions (cont.)

Considered promoting one of the external operators to have
spin 1 or 2

Discussed one possible application of these results in deriving
novel constraints from the ANEC in the context of 5-point
functions

Considered extending these methods to 6-point snowflake
channel blocks

Discussed ongoing efforts to implement 5-point bootstrap

In future: May be interesting to generalize these methods to
nontrivial exchanged representations



THANK YOU!


