Recursion Relations for Five-Point Conformal Blocks and Beyond: A Practical Approach

Valentina Prilepina

April 20, 2022 Institute for Theoretical and Mathematical Physics (ITMP) based on

arXiv:2103.12092 [hep-ph]

with David Poland and ongoing work with Petar Tadic

Why Study Conformal Field Theories (CFTs)?

CFTs describe universal physics of scale invariant critical points:

- continuous phase transitions in condensed matter and statistical physics systems
- fixed points of RG flows

Provide a handle on

- Universal structure of the landscape of QFTs
- Quantum gravity via the AdS/CFT correspondence and holography
- String theory
- Black holes

The Conformal Bootstrap

Conformal bootstrap program seeks to systematically apply

- conformal symmetry
- crossing symmetry
- unitarity/reflection positivity

to map out and solve the space of allowed CFTs

Figure: Upper bound on Δ_{ϵ} as a function of Δ_{σ} in 3d CFTs [El-Showk, Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, '12; '14]

The Ultimate Dream

- Owing to bootstrap: tremendous progress on the numerical and analytic fronts! e.g. Ferrara et al. (1971, 1973), Dobrev et al. (1976, 1977), Polyakov (1974), Dolan & Osborn (2001, 2004, 2011), Poland et al. (2012), Simmons-Duffin (2014), El-Showk et al. (2014), Kos et al. (2014, 2015, 2016), Costa & Hansen (2015), Rejon-Barrera & Robbins (2016), Echeverri et al. (2016), Costa et al. (2016), Fortin & Skiba (2016, 2019), Karateev et al. (2017), Poland & Simmons-Duffin (2019)
- Dream: to classify and solve the entire landscape of CFTs and predict their observables

CFTs are signposts in the landscape of QFTs!

Outline

- I. Five-Point Functions
 - Motivation
 - What is Known
 - Form
- II. Weight-Shifting Operator (WS) Formalism
 - Weight-Shifting Operators
 - Crossing Relations
 - Gluing 3-point Functions to Form Conformal Blocks

Outline (cont.)

- III. Recursion Relations from Weight-Shifting Operators
 - Recovering Known Recursion Relation for 4-point Blocks
 - Derivation of 5-point Recursion Relations
 - Main Results
 - Discussion

Outline (cont.)

- IV. Promoting Φ to a Spinning Operator
 - Spin 1 Case
 - Comment on Spin 2 Case
- V. The Averaged Null Energy Condition (ANEC): An Application
 - Discussion of Possible Constraints

Outline (cont.)

- VI. Ongoing Work: Moving Beyond 5-point Blocks
 - Generalization to the 6-point Snowflake Channel
- VII. Ongoing Work: The 5-point Conformal Bootstrap
 - Conformal Bootstrap for the 3D Ising Model via 5-point Blocks
- VIII. Conclusions

Motivation for Studying Higher-Point Functions

So far, most results extracted by considering 4-point functions! (for a review, see e.g. Poland, Rychkov and Vichi (2019))

- \Rightarrow Explicit expressions or recursion relations for conformal blocks appearing in 4-point functions of scalars in arbitrary d
- ⇒ Rich variety of techniques for handling 4-point blocks in arbitrary Lorentz representations

Motivation for Studying Higher-Point Functions (cont.)

Many reasons to desire a precise understanding of 5- and higher-point functions!

- Multipoint bootstrap Rosenhaus (2018), Parikh (2019), Bercini et al. (2021), Antunes et al. (2021)
- 2 Better access to different physical regimes of a CFT
- Is New probe into $\langle \mathcal{O}_H \mathcal{O}_H \mathcal{O}_H \rangle$ in holographic CFTs via 5-point object $\langle \mathcal{O}_L \mathcal{O}_L \mathcal{O}_L \mathcal{O}_L \mathcal{O}_L \rangle$
- 4 Improved understanding of CFT implications of the ANEC

What is Known So Far

A few key developments include

- Five-point scalar exchange conformal blocks first computed by Rosenhaus (2018)
- Holographic representations of higher-point conformal blocks constructed by Parikh (2019, 2020) and Hoback and Parikh (2021)
- Dimensional reduction formulae for higher-point scalar exchange blocks derived by Hoback and Parikh (2020)
- General representations of higher-point scalar exchange blocks developed by Fortin, Ma, Skiba (2019, 2020) using the operator product expansion (OPE) in embedding space

What is Known So Far (cont.)

- Few explicit results for higher-point conformal blocks capturing exchange of spinning operators exist
- Exception: Series expansion for general 5-point blocks with identical external scalars developed by Gonçalves et al. (2019)
- Lightcone blocks for five- and six-point functions in the snowflake channel obtained by Antunes et al. (2021)
- Multipoint comb channel blocks obtained in 3D and 4D via a connection to Gaudin integrable models by Buric et al. (2021)

Goal of this Work

Here we seek to

- Identify a simple and practical approach to computing 5-point blocks
- Improve and extend our understanding of 5-point blocks by deriving simple recursion relations

We

- Consider scalar 5-point function $\langle \phi_{\Delta_1} \phi_{\Delta_2} \Phi_{\Delta_3} \phi_{\Delta_4} \phi_{\Delta_5} \rangle$
- Compute the conformal block for arbitrary symmetric traceless tensor exchange in (12) and (45) OPEs

Our results

■ May be seen as a natural generalization of recursion relations for 4-point blocks obtained by Dolan & Osborn (2011)

Setting the Stage: 5-point Functions

- Work in the index-free embedding formalism of Costa et al. (2011)
- Restrict to parity-even correlators only
- Label spin- ℓ primaries by $\chi \equiv [\Delta, \ell]$

Conformal invariance fixes 5-point function of spin- $\!\ell$ primaries to have the form

$$\langle \mathcal{O}_1(X_1; Z_1) \cdots \mathcal{O}_5(X_5; Z_5) \rangle = \prod_{i < j}^5 X_{ij}^{-\alpha_{ij}} \sum_k f_k(u_a) Q_{\chi_1, \dots, \chi_5}^{(k)}(\{X_i; Z_i\}),$$

where $X_{ij} = -2X_i \cdot X_j$ and

$$\alpha_{ij} = \frac{1}{3} \left(\tau_i + \tau_j - \frac{1}{4} \sum_{k=1}^5 \tau_k \right)$$

with
$$\tau_i = \Delta_i + \ell_i$$

Setting the Stage: 5-point Functions (cont.)

In this form,

- \blacksquare Factors X_{ij} carry powers fixed by homogeneity
- $f_k(u_a)$ is some function of the conformal cross-ratios u_a
- Polynomials $Q^{(k)}$ have weight ℓ_i in each point X_i , degree ℓ_i in each Z_i
- $lackbox{Q}^{(k)}$ must be identically transverse, i.e.

$$Q_{\chi_{1},...,\chi_{5}}^{(k)}(\{\lambda_{i}X_{i};\alpha_{i}Z_{i}+\beta_{i}X_{i}\})=Q_{\chi_{1},...,\chi_{5}}^{(k)}(\{X_{i};Z_{i}\})\prod_{i}(\lambda_{i}\alpha_{i})^{\ell_{i}}$$

- $Q^{(k)}$ constructed from basic building blocks
 - $V_{i,jk}$
 - H_{ii}

of the standard box tensor basis

Setting the Stage: 5-point Conformal Blocks

May expand $\sum_{k} [\dots]$ in a basis of conformal blocks, which

- Capture the exchange of specific primary operators in the OPE
- Are the building blocks of CFT correlation functions
- Effectively encode the kinematical contribution of descendant operators in terms of primary operators

Choose to compute blocks in double OPE channel (12)(45)

Setting the Stage: 5-point Conformal Blocks (cont.)

Consider the scalar 5-point function

$$\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\Phi_{\Delta_3}(X_3)\phi_{\Delta_4}(X_4)\phi_{\Delta_5}(X_5)\rangle$$

■ Insert a projector $|\mathcal{O}_{\Delta,\ell}|$ onto the conformal multiplet of $\mathcal{O}_{\Delta,\ell}$ (similarly for $\mathcal{O}'_{\Delta',\ell'}$) into the 5-point function

$$|\mathcal{O}| \equiv \frac{1}{\mathcal{N}_{\mathcal{O}}} \int \!\! D^d X |\mathcal{O}(X)\rangle \langle \tilde{\mathcal{O}}(X)|$$

- Each 3-point function $\langle \mathcal{O}_{\Delta,\ell} \Phi_{\Delta_3} \mathcal{O}'_{\Delta',\ell'} \rangle$ expanded in a basis of tensor structures
- Tensor structures labeled by index a
- Each comes with an independent coefficient $\lambda^a_{\mathcal{O}_{\Delta,\ell}\Phi_{\Delta_3}\mathcal{O}'_{\Delta',\ell'}}$

Setting the Stage: 5-point Conformal Blocks (cont.)

This gives

$$\begin{split} &\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)|\mathcal{O}_{\Delta,\ell}|\Phi_{\Delta_3}(X_3)|\mathcal{O}_{\Delta',\ell'}'|\phi_{\Delta_4}(X_4)\phi_{\Delta_5}(X_5)\rangle = \\ &\sum_{a} \lambda_{\phi_{\Delta_1}\phi_{\Delta_2}\mathcal{O}_{\Delta,\ell}}\lambda_{\mathcal{O}_{\Delta,\ell}\Phi_{\Delta_3}\mathcal{O}_{\Delta',\ell'}'}^a\lambda_{\phi_{\Delta_4}\phi_{\Delta_5}\mathcal{O}_{\Delta',\ell'}'}W_{\Delta,\ell,\Delta',\ell';\Delta_i}^{(a)}(X_i)\,, \end{split}$$

where

$$W^{(a)}_{\Delta,\ell,\Delta',\ell';\Delta_i}(X_i) = P_{\Delta_i}(X_i)G^{(a)}_{\Delta,\ell,\Delta',\ell'}(u_i)$$

The object $W^{(a)}_{\Delta,\ell,\Delta',\ell';\Delta_i}(X_i)$ is comprised of

- \blacksquare external-dimension-dependent prefactor $P_{\Delta_i}(X_i)$
- 5-point conformal block for arbitrary symmetric traceless exchange $[\Delta, \ell]$, $[\Delta', \ell']$: $G^{(a)}_{\Delta, \ell, \Delta', \ell'}(u_i)$

Setting the Stage: 5-point Conformal Blocks (cont.)

In 5-point case,

- There are generically five independent conformal cross-ratios u_i for $d \ge 3$
- \blacksquare Can make different choices of basis for u_i
- Multiple forms for $P_{\Delta_i}(X_i)$ exist

Our Conventions

Various conventions for the leg factor and cross-ratios exist in the literature, e.g. in Parikh (2019)

$$P_{\Delta_i}(X_i) = \left(\frac{X_{25}}{X_{15}X_{12}}\right)^{\frac{\Delta_1}{2}} \left(\frac{X_{14}}{X_{15}X_{45}}\right)^{\frac{\Delta_5}{2}} \left(\frac{X_{15}}{X_{12}X_{25}}\right)^{\frac{\Delta_2}{2}} \left(\frac{X_{15}}{X_{13}X_{35}}\right)^{\frac{\Delta_3}{2}} \left(\frac{X_{15}}{X_{14}X_{45}}\right)^{\frac{\Delta_4}{2}},$$

where

$$u_1 = \frac{X_{12}X_{35}}{X_{25}X_{13}}, \quad u_2 = \frac{X_{13}X_{45}}{X_{35}X_{14}}, \quad w_{2;3} = \frac{X_{15}X_{23}}{X_{25}X_{13}}, \quad w_{2;4} = \frac{X_{15}X_{24}}{X_{25}X_{14}}, \quad w_{3;4} = \frac{X_{15}X_{34}}{X_{35}X_{14}}$$

→ Here we choose to work in a convention-independent way as much as possible.

How to Compute the Blocks?

Some prominent methods for computing conformal blocks are

- Conformal integral approach (e.g. Dolan & Osborn (2001, 2004), Simmons-Duffin (2012))
- Conformal Casimir equation (e.g. Dolan & Osborn (2004, 2011), Isachenkov & V. Schomerus (2016), Kravchuk (2018))
- Weight-Shifting operator formalism (e.g. Karateev et al. (2017), Costa & Hansen (2018), Kravchuk & Simmons-Duffin (2018), Karateev et. al. (2018), Albayrak et. al. (2020))

We choose the weight-shifting formalism, which

■ Empowers us to derive a set of recursion relations for generating $G^{(a)}_{\Delta,\ell,\Delta',\ell'}(u_i)$

The Weight-Shifting Operator Formalism

This formalism (due to Karateev et al. (2017)) introduces a

- Large class of conformally-covariant differential operators
- → These operators may be used to relate correlation functions of operators in different representations of the conformal group
- → Method enables determination of seed conformal blocks as well as more general blocks
- ⇒ Allows for efficient derivation of recursion relations

The Weight-Shifting Operators

Weight-Shifting operators

- \Rightarrow Correspond to tensor products of different finite-dimensional representations \mathcal{W}
 - lacksquare Each set $\{\mathcal{D}_x^{(v)A}\}$ associated with a particular \mathcal{W}
 - $lacksquare A=1,\ldots,\dim\mathcal{W}$ is an index for \mathcal{W}
 - lacksquare v refers to a weight vector of ${\mathcal W}$
 - \blacksquare E.g. ${\mathcal W}$ may be the fundamental vector representation ${\mathcal W}={\mathcal V}=\square$

The Weight-Shifting Operators (cont.)

In particular,

■ $\mathcal{D}_{x}^{(v)A}$: $[\Delta, \rho] \to [\Delta - \delta \Delta_{v}, \lambda]$ associated with \mathcal{W} for generic Δ are in one-to-one correspondence with irreducible components of $\mathcal{W}^{*} \otimes V_{\Delta, \rho}$

where $V_{\Delta,\rho}$ is the representation under which $\mathcal{O}(x)$ transforms

 \Rightarrow Action of $\mathcal{D}_{x}^{(v)A}$ on $\mathcal{O}(x)$: to shift the weights of \mathcal{O} by the weights of v, while introducing a free A index

For example, to increase or decrease the spin or dimension of ${\mathcal O}$

The Weight-Shifting Operators (cont.)

- May construct such operators explicitly in the embedding space formalism
- Focus on case of symmetric traceless tensors of SO(d)

For vector representation $\mathcal{W}=\mathcal{V}$, can build $\{\mathcal{D}_X^{(\delta\Delta,\delta\ell)A}\}$ which map

$$\mathcal{D}_{X}^{(-0)A}: [\Delta, \ell]
ightarrow [\Delta - 1, \ell] \,, \ \mathcal{D}_{X}^{(0+)A}: [\Delta, \ell]
ightarrow [\Delta, \ell + 1] \,, \ \mathcal{D}_{X}^{(0-)A}: [\Delta, \ell]
ightarrow [\Delta, \ell - 1] \,, \ \mathcal{D}_{X}^{(+0)A}: [\Delta, \ell]
ightarrow [\Delta, \ell] .$$

Crossing Relations for Weight-Shifting Operators

A crucial aspect is that

- Such operators obey a type of crossing relation
- Comes in two varieties: two- and three-point
- Role: to relate action of weight-shifting operators at different points

Symbolize a weight-shifting differential operator by

$$\mathcal{D}_{X}^{(a)A} = 0 \longrightarrow \mathcal{W}$$

$$(1)$$

2-point Crossing Relation

Represent a conformally-invariant 2-point structure by

$$\langle \mathcal{O}_1(X_1)\mathcal{O}_2(X_2)\rangle = \mathcal{O}_1 \longrightarrow \mathcal{O}_2$$

Acting with a weight-shifting operator on $\langle \mathcal{O}_1(X_1)\mathcal{O}_2(X_2)\rangle$ gives a crossing relation

$$\mathcal{O}^{\dagger} \xrightarrow{\mathcal{O}} \stackrel{\mathcal{O}}{\longrightarrow} \mathcal{O}' = \left\{ \begin{array}{c} \mathcal{O}^{\dagger} \\ \mathcal{O}' \end{array} \right\}_{(\bar{m})}^{(m)} \mathcal{O}^{\dagger} \xrightarrow{(\bar{m})} \stackrel{\mathcal{O}'^{\dagger}}{\longleftarrow} \mathcal{O}'$$

which corresponds to

$$\mathcal{D}_{X_2}^{(m)A}\langle\mathcal{O}(X_1)\mathcal{O}(X_2)
angle = \left\{egin{align*} \mathcal{O}^\dagger \ \mathcal{O}' \end{array}
ight\}_{(ar{m})}^{(m)} \mathcal{D}_{X_1}^{(ar{m})A}\langle\mathcal{O}'(X_1)\mathcal{O}'(X_2)
angle \end{array}$$

where \bar{m} denotes shift opposite to m

3-point Crossing Relation

Represent a conformally invariant 3-point structure by the vertex

$$\langle \mathcal{O}_1(X_1)\mathcal{O}_2(X_2)\mathcal{O}_3(X_3)\rangle^{(a)} = \bigcirc_{\mathcal{O}_1}$$

where a enumerates all singlets in $(\rho_1 \otimes \rho_2 \otimes \rho_3)^{SO(d-1)}$

3-point Crossing Relation (cont.)

Again, acting on $\langle \mathcal{O}_1(X_1)\mathcal{O}_2(X_2)\mathcal{O}_3(X_3)\rangle^{(a)}$ with a weight-shifting operator gives a crossing relation

which corresponds to

$$\mathcal{D}_{X_3}^{(m)A}\langle \mathcal{O}_1(X_1)\mathcal{O}_2(X_2)\mathcal{O}_3'(X_3)\rangle^{(a)}$$

$$=\sum_{\mathcal{O}_1',b,n} \begin{cases} \mathcal{O}_1 & \mathcal{O}_2 & \mathcal{O}_1' \\ \mathcal{O}_3 & \mathcal{W} & \mathcal{O}_3' \end{cases}_{(b)(n)}^{(a)(m)} \mathcal{D}_{X_1}^{(n)A}\langle \mathcal{O}_1'(X_1)\mathcal{O}_2(X_2)\mathcal{O}_3(X_3)\rangle^{(b)}$$

 \Rightarrow Coefficients – Racah coefficients or 6j symbols

3-point Crossing Relation (cont.)

Three-point crossing relation is

- ⇒ Effectively a change-of-basis equation between different bases of covariant 3-point structures
 - Bases generated by the action of a weight-shifting operator at a given point X_1 or X_3
 - Sum over \mathcal{O}_1' is finite, ranging over the operators in $\mathcal{O}_1 \otimes \mathcal{W}$
 - Relation reduces to 2-point variety if $O_2 = 1$
- ⇒ Relation empowers us to move weight-shifting operators from one leg (operator) to another
- ⇒ Main computational tool in the formalism!

Bubble Coefficients

If we contract both sides of the 3-point relation $\mathcal{D}_{X_1A}^{(n)}$, find

$$\begin{split} \mathcal{D}_{X_1\,A}^{(n)} \mathcal{D}_{X_3}^{(m)A} \langle \mathcal{O}_1(X_1) \mathcal{O}_2(X_2) \mathcal{O}_3'(X_3) \rangle^{(a)} \\ &= \sum_{\mathcal{O}_1',b,p} \left\{ \begin{matrix} \mathcal{O}_1 & \mathcal{O}_2 & \mathcal{O}_1' \\ \mathcal{O}_3 & \mathcal{W} & \mathcal{O}_3' \end{matrix} \right\}_{(b)(p)}^{(a)(m)} \mathcal{D}_{X_1\,A}^{(n)} \mathcal{D}_{X_1}^{(p)A} \langle \mathcal{O}_1'(X_1) \mathcal{O}_2(X_2) \mathcal{O}_3(X_3) \rangle^{(b)} \,. \end{split}$$

 \Rightarrow RHS features two contracted weight-shifting operators acting at the same point!

Bubble Coefficients (cont.)

■ Composition $\mathcal{D}_{X_1}^{(n)} \mathcal{A}_{X_1}^{(p)A}$ corresponds to a bubble diagram:

$$\mathcal{D}_{X_{1}A}^{(n)}\mathcal{D}_{X_{1}}^{(p)A} = \mathcal{O}_{1} \underbrace{\begin{pmatrix} \mathcal{O}_{1}' \\ \mathcal{O}_{1} \mathcal{W} \end{pmatrix}^{(n)(p)}}_{p} \delta_{\mathcal{O}_{1}'\mathcal{O}_{1}''}$$

Gluing 3-point Functions to Form Conformal Blocks

Standard way to encode a conformal block:

Conformal integral of product of 3-point functions

E.g. scalar exchange block in a purely scalar 4-point function has the form

$$\left.\frac{1}{\mathcal{N}_{\mathcal{O}}}\int\!\!D^{d}XD^{d}Y\langle\phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})\mathcal{O}(X)\rangle\frac{1}{(-2X\cdot Y)^{d-\Delta}}\langle\mathcal{O}(Y)\phi_{\Delta_{3}}(X_{3})\phi_{\Delta_{4}}(X_{4})\rangle\right|_{M}$$

with $M=e^{2\pi i \varphi}$ denoting the projection onto the appropriate monodromy invariant subspace

Gluing 3-point Functions to Form Conformal Blocks (cont.)

In the weight-shifting formalism (Karateev et al. (2017)),

■ Operation which "glues" the 3-point correlators $\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\mathcal{O}(X)\rangle$ and $\langle \mathcal{O}(Y)\phi_{\Delta_3}(X_3)\phi_{\Delta_4}(X_4)\rangle$ together

Symbolized by

$$|\mathcal{O}\rangle \bowtie \langle \mathcal{O}| \equiv \frac{1}{\mathcal{N}_{\mathcal{O}}} \int D^{d} X D^{d} Y |\mathcal{O}(X)\rangle \frac{1}{(-2X \cdot Y)^{d-\Delta}} \langle \mathcal{O}(Y)|$$

$$= \mathcal{O} \longrightarrow -\infty \longrightarrow -\infty .$$

For spinning operators,

■ $\mathcal{O}_{\Delta,\rho}$ to be glued to representation with which it has a nonvanishing 2-point function

Gluing 3-point Functions to Form Conformal Blocks (cont.)

In terms of this notation, a general 4-point conformal block is given by

$$W^{ab} \equiv \langle \mathcal{O}_1 \mathcal{O}_2 \mathcal{O} \rangle^{(a)} \bowtie^{(b)} \langle \mathcal{O}^\dagger \mathcal{O}_3 \mathcal{O}_4 \rangle =$$

$$O_1 \qquad \qquad O_4$$

General Strategy

Our overall strategy involves

- ⇒ Acting with specific combinations of weight-shifting operators on a given conformal block
- ⇒ Then applying the two- and three- point crossing relations as needed

Goal: to re-express the original block in terms of

 linear combinations of lower-spin blocks with shifted external and, potentially, exchanged dimensions

General Strategy (cont.)

 To implement such forms, require a mechanism for integrating by parts

This is the statement

$$|\mathcal{D}^{(c)A}\mathcal{O}\rangle\bowtie\langle\mathcal{O}'^{\dagger}|=\sum_{m}\left\{\begin{matrix}\mathcal{O}^{\dagger} & \mathbb{1} & \mathcal{O}'^{\dagger}\\ \mathcal{O}' & \mathcal{W} & \mathcal{O}\end{matrix}\right\}_{\bullet(m)}^{\bullet(c)}|\mathcal{O}\rangle\bowtie\langle\mathcal{D}^{(m)A}\mathcal{O}'^{\dagger}|$$

■ Empowers us to move the weight-shifting operators from one side of the ⋈ to the other!

Recursion Relations from Weight-Shifting Operators: Four-Point Case

Describe the basic procedure for extracting recursion relations:

■ Four-point scalar conformal blocks defined as

$$\begin{split} \langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)|\mathcal{O}_{\Delta,\ell}|\phi_{\Delta_3}(X_3)\phi_{\Delta_4}(X_4)\rangle &= \frac{1}{(X_{12})^{\frac{1}{2}(\Delta_1+\Delta_2)}(X_{34})^{\frac{1}{2}(\Delta_3+\Delta_4)}} \\ &\times \left(\frac{X_{24}}{X_{14}}\right)^{\Delta_{12}/2} \left(\frac{X_{14}}{X_{13}}\right)^{\Delta_{34}/2} \mathcal{G}_{\Delta,\ell}(u,v), \end{split}$$

where $\Delta_{ij} = \Delta_i - \Delta_j$

Act on this object with the combination of operators

$$-2(\mathcal{D}_{X_1}^{(-0)}\cdot\mathcal{D}_{X_4}^{(-0)})=-2X_1\cdot X_4=X_{14}$$

Recursion Relations from Weight-Shifting Operators: Four-Point Case (cont.)

- \blacksquare Gives a 4-point function with $\Delta_1 \to \Delta_1 1$ and $\Delta_4 \to \Delta_4 1$
- lacksquare Shifts in Δ_1 and $\Delta_4 \Rightarrow$ a shifted external prefactor
- Absorb it into $u^{-1/2}$

Next, apply

- ⇒ three-point crossing relation
- ⇒ integration-by-parts rule

In three-point rule, sum over

$$\square \otimes [\Delta,\ell] = [\Delta-1,\ell] \oplus [\Delta,\ell+1] \oplus [\Delta,\ell-1] \oplus [\Delta+1,\ell] + \dots.$$

Recursion Relations from Weight-Shifting Operators: Four-Point Case (cont.)

Result is the familiar recursion relation due to Dolan and Osborn:

$$egin{split} G_{\Delta,\ell}(u,v) &= rac{1}{\mathsf{s}^{(14)}} igg(u^{-1/2} G_{\Delta,\ell-1}(u,v) igg|_{\Delta_1 o \Delta_1 + 1, \Delta_4 o \Delta_4 + 1} - G_{\Delta-1,\ell-1}(u,v) \ &- t^{(14)} G_{\Delta,\ell-2}(u,v) - u^{(14)} G_{\Delta+1,\ell-1}(u,v) igg) \end{split}$$

 \Rightarrow This is Eq. (4.18) in Dolan & Osborn (2011)

Now wish to generalize this analysis to 5-point functions!

Basic idea: to express 5-point conformal block for ([Δ , ℓ], [Δ' , ℓ']) exchange in terms of lower-spin blocks

As before, act on 5-point function

$$\begin{split} \langle \phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})|\mathcal{O}_{\Delta,\ell}|\Phi_{\Delta_{3}}(X_{3})|\mathcal{O}'_{\Delta',\ell'}|\phi_{\Delta_{4}}(X_{4})\phi_{\Delta_{5}}(X_{5})\rangle \\ &= \langle \phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})\mathcal{O}_{\Delta,\ell}\rangle \bowtie \langle \mathcal{O}_{\Delta,\ell}\Phi_{\Delta_{3}}(X_{3})\mathcal{O}'_{\Delta',\ell'}\rangle \bowtie \langle \mathcal{O}'_{\Delta',\ell'}\phi_{\Delta_{4}}(X_{4})\phi_{\Delta_{5}}(X_{5})\rangle \\ &= \sum_{a}\sum_{\mathcal{O}_{\Delta,\ell}}\sum_{\mathcal{O}'_{\Delta',\ell'}}\lambda_{\phi_{\Delta_{1}}\phi_{\Delta_{2}}\mathcal{O}_{\Delta,\ell}}\lambda_{\mathcal{O}_{\Delta,\ell}\Phi_{\Delta_{3}}\mathcal{O}'_{\Delta',\ell'}}\lambda_{\phi_{\Delta_{4}}\phi_{\Delta_{5}}\mathcal{O}'_{\Delta',\ell'}}W_{\Delta,\ell,\Delta',\ell';\Delta_{i}}^{(a)}(X_{i}) \end{split}$$

With weight-shifting operator combination

$$\begin{split} -2(\mathcal{D}_{X_{1}}^{(-0)}\cdot\mathcal{D}_{X_{3}}^{(-0)})\langle\phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})|\mathcal{O}_{\Delta,\ell}|\Phi_{\Delta_{3}}(X_{3})|\mathcal{O}_{\Delta',\ell'}'|\phi_{\Delta_{4}}(X_{4})\phi_{\Delta_{5}}(X_{5})\rangle\\ &=X_{13}\langle\phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})|\mathcal{O}_{\Delta,\ell}|\Phi_{\Delta_{3}}(X_{3})|\mathcal{O}_{\Delta',\ell'}'|\phi_{\Delta_{4}}(X_{4})\phi_{\Delta_{5}}(X_{5})\rangle \end{split}$$

Consider

$$\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\mathcal{O}_{\Delta,\ell}\rangle\bowtie \langle \mathcal{O}_{\Delta,\ell}\Phi_{\Delta_3}(X_3)\mathcal{O}'_{\Delta',\ell'}\rangle\bowtie \langle \mathcal{O}'_{\Delta',\ell'}\phi_{\Delta_4}(X_4)\phi_{\Delta_5}(X_5)\rangle$$

Apply three-point crossing relation to $\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\mathcal{O}_{\Delta,\ell}\rangle$:

$$\begin{split} \mathcal{D}_{X_{1}}^{(-0)A} \langle \phi_{\Delta_{1}}(X_{1}) \phi_{\Delta_{2}}(X_{2}) \mathcal{O}_{\Delta,\ell}(X_{I}) \rangle &= \mathcal{A}_{(+0)}^{(-0)} \mathcal{D}_{X_{I}}^{(+0)A} \langle \phi_{\Delta_{1}-1}(X_{1}) \phi_{\Delta_{2}}(X_{2}) \mathcal{O}_{\Delta-1,\ell}(X_{I}) \rangle \\ &+ \mathcal{A}_{(0-)}^{(-0)} \mathcal{D}_{X_{I}}^{(0-)A} \langle \phi_{\Delta_{1}-1}(X_{1}) \phi_{\Delta_{2}}(X_{2}) \mathcal{O}_{\Delta,\ell+1}(X_{I}) \rangle \\ &+ \mathcal{A}_{(0+)}^{(-0)} \mathcal{D}_{X_{I}}^{(0+)A} \langle \phi_{\Delta_{1}-1}(X_{1}) \phi_{\Delta_{2}}(X_{2}) \mathcal{O}_{\Delta,\ell-1}(X_{I}) \rangle \\ &+ \mathcal{A}_{(-0)}^{(-0)} \mathcal{D}_{X_{I}}^{(-0)A} \langle \phi_{\Delta_{1}-1}(X_{1}) \phi_{\Delta_{2}}(X_{2}) \mathcal{O}_{\Delta+1,\ell}(X_{I}) \rangle \end{split}$$

May extract 6j symbols $\mathcal{A}_{(n)}^{(-0)}$ by

- Acting on both sides with $\mathcal{D}_{X_IA}^{(\bar{n})}$ (\bar{n} has shift opposite to n)
- $lue{}$ Noting \exists only one nonzero bubble coefficient on RHS
- Isolating $\mathcal{A}_{(n)}^{(-0)}$

Next step is

■ To push each of the operators $\mathcal{D}_{X_l}^{(n)A}$ through the shadow integral

For this, invoke integration-by-parts rule to move $\mathcal{D}_{X_I}^{(n)A}$ across $\bowtie !$

■ For example, for $\mathcal{D}_{X_I}^{(+0)A}$

$$|\mathcal{D}_{X_I}^{(+0)A}\mathcal{O}_{\Delta-1,\ell}\rangle\bowtie\langle\mathcal{O}_{\Delta,\ell}|=B_{(+0)(-0)}|\mathcal{O}_{\Delta-1,\ell}\rangle\bowtie\langle\mathcal{D}_{X_I}^{(-0)A}\mathcal{O}_{\Delta,\ell}|$$

At this point, arrive at

$$\mathcal{D}_{X_1}^{(-0)A} \langle \phi_{\Delta_1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta,\ell}(X_I) \rangle \bowtie \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} = \\ \mathcal{A}_{(+0)}^{(-0)B} B_{(+0)(-0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta-1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(-0)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(0-)(0+)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta,\ell+1}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(0+)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(0+)}^{(-0)B} B_{(0+)(0-)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta,\ell-1}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(0+)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(-0)(+0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta+1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(+0)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(-0)(+0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta+1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(+0)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(-0)(+0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta+1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(+0)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(-0)(+0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta+1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(+0)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(-0)(+0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_2) \mathcal{O}_{\Delta+1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(+0)A} \langle \mathcal{O}_{\Delta,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}'(X_J) \rangle^{(a)} \\ + \mathcal{A}_{(-0)}^{(-0)B} B_{(-0)(+0)} \langle \phi_{\Delta_1-1}(X_1) \phi_{\Delta_2}(X_1) \mathcal{O}_{\Delta+1,\ell}(X_I) \rangle \bowtie \mathcal{D}_{X_I}^{(-0)B} \langle \mathcal{O}_{\Delta+1,\ell'}(X_I) \rangle \otimes \mathcal{D}_{A_I}^{(-0)B} \langle \mathcal{O}_{\Delta+1,\ell'}(X_I) \rangle \otimes \mathcal{D}_{A_I}^{(-0)B$$

Next apply the three-point relation again!

- \Rightarrow Purpose: to move the action of $\mathcal{D}_{X_I}^{(n)A}$ from the internal point X_I to the external point X_3 !
 - Shifts $[\Delta_3 \delta \Delta_n, -\delta \ell_n]$ take on values in

$$\square \otimes [\Delta_3,0] = [\Delta_3-1,0] \oplus [\Delta_3,1] \oplus [\Delta_3+1,0]$$

At this stage, recall that

- $\mathcal{D}_{X_1}^{(-0)A}$ is contracted with $\mathcal{D}_{X_3\,A}^{(-0)}$ in our combination of choice
- \Rightarrow So all bubble coefficients on RHS vanish except for one, $\mathcal{D}_{X_3\,A}^{(-0)}\mathcal{D}_{X_3}^{(+0)A}$
 - Label a enumerates constituent 3-point tensor structures of $\langle \mathcal{O}_{\Delta,\ell} \Phi_{\Delta_3} \mathcal{O}'_{\Delta',\ell'} \rangle$, i.e. $\langle \mathcal{O}_{\Delta,\ell} \Phi_{\Delta_3} \mathcal{O}'_{\Delta',\ell'} \rangle^{(a)}$
 - Parameterize structures by the index n_{IJ} : $0 \le n_{IJ} \le \min(\ell, \ell')$

Extracting relevant 6j symbols and combining everything, obtain

$$\begin{split} -2(\mathcal{D}_{X_{1}}^{(-0)}\cdot\mathcal{D}_{X_{3}}^{(-0)})W_{\Delta,\ell,\Delta',\ell';\Delta_{1},\Delta_{2},\Delta_{3},\Delta_{4},\Delta_{5}}^{(n_{IJ})} = \\ &-2b_{\Phi}^{(-0)(+0)}\bigg(\mathcal{A}_{(+0)}^{(-0)}B_{(+0)(-0)}\mathcal{B}_{n_{IJ}(+0)}^{n_{IJ}(-0)}W_{\Delta-1,\ell,\Delta',\ell';\Delta_{1}-1,\Delta_{2},\Delta_{3}-1,\Delta_{4},\Delta_{5}}^{(n_{IJ})} \\ &+\sum_{m_{IJ}=n_{IJ}}^{n_{IJ}+1}\mathcal{A}_{(0-)}^{(-0)}B_{(0-)(0+)}\mathcal{B}_{m_{IJ}(+0)}^{n_{IJ}(0+)}W_{\Delta,\ell+1,\Delta',\ell';\Delta_{1}-1,\Delta_{2},\Delta_{3}-1,\Delta_{4},\Delta_{5}}^{(m_{IJ})} \\ &+\sum_{m_{IJ}=n_{IJ}-1}^{n_{IJ}+1}\mathcal{A}_{(0+)}^{(-0)}B_{(0+)(0-)}\mathcal{B}_{m_{IJ}(+0)}^{n_{IJ}(0-)}W_{\Delta,\ell-1,\Delta',\ell';\Delta_{1}-1,\Delta_{2},\Delta_{3}-1,\Delta_{4},\Delta_{5}}^{(m_{IJ})} \\ &+\sum_{m_{IJ}=n_{IJ}-1}^{n_{IJ}+2}\mathcal{A}_{(-0)}^{(-0)}B_{(-0)(+0)}\mathcal{B}_{m_{IJ}(+0)}^{n_{IJ}(+0)}W_{\Delta+1,\ell,\Delta',\ell';\Delta_{1}-1,\Delta_{2},\Delta_{3}-1,\Delta_{4},\Delta_{5}}^{(m_{IJ})}\bigg) \end{split}$$

 \Rightarrow Evidently a recursion relation in spin ℓ , with ℓ' held fixed!

Next apply analogous approach to the other spin:

$$\begin{split} -2(\mathcal{D}_{X_{3}}^{(-0)}\cdot\mathcal{D}_{X_{5}}^{(-0)})\langle\phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})|\mathcal{O}_{\Delta,\ell}|\Phi_{\Delta_{3}}(X_{3})|\mathcal{O}_{\Delta',\ell'}'|\phi_{\Delta_{4}}(X_{4})\phi_{\Delta_{5}}(X_{5})\rangle\\ &=X_{35}\langle\phi_{\Delta_{1}}(X_{1})\phi_{\Delta_{2}}(X_{2})|\mathcal{O}_{\Delta,\ell}|\Phi_{\Delta_{3}}(X_{3})|\mathcal{O}_{\Delta',\ell'}'|\phi_{\Delta_{4}}(X_{4})\phi_{\Delta_{5}}(X_{5})\rangle \end{split}$$

Mirror image of the above procedure with

- lacksquare $\Delta \leftrightarrow \Delta'$
- $\ell \leftrightarrow \ell'$
- $lack \Delta_{12}
 ightarrow -\Delta_{45}$

Main Results

For convenience, adopt shorthand notation

$$G_{(\ell,\ell';\delta_0,\delta_0')}^{(n)} \equiv G_{\Delta+\delta_0,\ell,\Delta'+\delta_0',\ell'}^{(n)}(u_i)$$

Shifting $\Delta_3 \to \Delta_3 + 1$, and $\Delta_1 \to \Delta_1 + 1$, $\ell \to \ell - 1$; $\Delta_5 \to \Delta_5 + 1$, $\ell' \to \ell' - 1$, obtain the set

$$(1) \ G_{(\ell,\ell';0,0)}^{(n_{IJ})} = \frac{1}{s_{n_{IJ}}} \left(f(u_i) G_{(\ell-1,\ell';0,0)}^{(n_{IJ})} \middle|_{\Delta_1 \to \Delta_1 + 1, \Delta_3 \to \Delta_3 + 1} - G_{(\ell-1,\ell';-1,0)}^{(n_{IJ})} - s_{n_{IJ} + 1} G_{(\ell,\ell';0,0)}^{(n_{IJ} + 1)} - t_{n_{IJ} - 1} G_{(\ell-2,\ell';0,0)}^{(n_{IJ} - 1)} - t_{n_{IJ}} G_{(\ell-2,\ell';0,0)}^{(n_{IJ} - 1)} - t_{n_{IJ}} G_{(\ell-2,\ell';0,0)}^{(n_{IJ} - 1)} - t_{n_{IJ} + 1} G_{(\ell-2,\ell';0,0)}^{(n_{IJ} + 1)} - u_{n_{IJ} - 1} G_{(\ell-1,\ell';1,0)}^{(n_{IJ} - 1)} - u_{n_{IJ}} G_{(\ell-1,\ell';1,0)}^{(n_{IJ} - 1)} - u_{n_{IJ} + 1} G_{(\ell-1,\ell';1,0)}^{(n_{IJ} + 1)} - u_{n_{IJ} + 2} G_{(\ell-1,\ell';1,0)}^{(n_{IJ} - 1)} - u_{n_{IJ}} G_{(\ell-1,\ell$$

and

$$(2) \ G_{(\ell,\ell';0,0)}^{(n_{IJ})} = \frac{1}{s'_{n_{IJ}}} \left(f'(u_{i}) G_{(\ell,\ell'-1;0,0)}^{(n_{IJ})} \bigg|_{\Delta_{3} \to \Delta_{3}+1, \Delta_{5} \to \Delta_{5}+1} - G_{(\ell,\ell'-1;0,-1)}^{(n_{IJ})} - s'_{n_{IJ}+1} G_{(\ell,\ell';0,0)}^{(n_{IJ}+1)} - t'_{n_{IJ}-1} G_{(\ell,\ell'-2;0,0)}^{(n_{IJ}-1)} - t'_{n_{IJ}} G_{(\ell,\ell'-2;0,0)}^{(n_{IJ}-1)} - t'_{n_{IJ}-1} G_{(\ell,\ell'-2;0,0)}^{(n_{IJ}-1)} - t'_{n_{IJ}-1} G_{(\ell,\ell'-1;0,1)}^{(n_{IJ}-1)} - t'_{n_{IJ}+1} G_{(\ell,\ell'-1;0,1)}^{(n_{IJ}-1)} - t'_{n_{IJ}+2} G_{(\ell,\ell'-1;0,1)}^{(n_{IJ}-1)} \right)$$

Discussion of Results

Relations defined in a convention-independent way:

- $f(u_i)$ and $f'(u_i)$ represent cross-ratio-dependent prefactors
- e.g. for the set of conventions in Parikh (2019)

$$f(u_i) = (u_1)^{-1/2}, \quad f'(u_i) = (u_2)^{-1/2}$$

■ Coefficients — products of the various 6*j* symbols

May regard above relations as two independent results:

- One re-expresses a block for $[\Delta, \ell]$, $[\Delta', \ell']$ exchange in terms of $\{(\ell, \ell'), (\ell 1, \ell'), (\ell 2, \ell')\}$
- The other does the same for ℓ' , with ℓ held fixed

Discussion of Results (cont.)

Remark: All terms on RHS have lower spins except

$$\bullet$$
 $s_{n_{IJ}+1}$ and $s_{n_{IJ}+1}'$

But these have a larger 3-point structure index, $n_{IJ}+1$ and vanish only

- $s_{n_{IJ}+1}$: at maximum value $n_{IJ} = \min(\ell-1,\ell') = \ell'$ for $\ell' < \ell$
- $s'_{n_{IJ}+1}$: at maximum value $n_{IJ} = \min(\ell,\ell'-1) = \ell$ for $\ell < \ell'$

Observe: Case $\ell = \ell'$ and $n_{IJ} = \ell - 1$ missing here

Need additional relation for this!

Discussion of Results (cont.)

Hence, generate the blocks as follows:

- If $\ell' \leq \ell$, start from the seed $n_{IJ} = \ell'$ and iterate (1) until $\ell' > \ell$
- If $\ell \leq \ell'$, start from the seed $n_{IJ} = \ell$ and iterate (2) until $\ell > \ell'$
- If $\ell' = \ell$ and $n_{IJ} = \ell 1$, use special recursion relation (combine with action of $-2(\mathcal{D}_{X_1}^{(-0)} \cdot \mathcal{D}_{X_5}^{(-0)})$)

Thus, can use these relations together

 \Rightarrow to recursively generate 5-point conformal blocks for arbitrary $[\ell,\ell']$ exchange, starting from the seeds $\ell=\ell'=0$

To sum up:

 \blacksquare Given an explicit prescription for arbitrary $[\ell,\ell']$ exchange 5-point blocks

Seek to promote the middle operator Φ_{Δ_3} to a spinning operator

■ Simplest case: Φ_{Δ_3} to vector operator

Goal:

■ To cast $(\mathcal{O}_{\Delta,\ell}, \mathcal{O}'_{\Delta',\ell'})$ exchange block in terms of seed blocks for purely scalar 5-point function

In

$$\langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\mathcal{O}_{\Delta,\ell}\rangle\bowtie \langle \mathcal{O}_{\Delta,\ell}\Phi_{\Delta_3}(X_3)\mathcal{O}'_{\Delta',\ell'}\rangle\bowtie \langle \mathcal{O}'_{\Delta',\ell'}\phi_{\Delta_4}(X_4)\phi_{\Delta_5}(X_5)\rangle$$

Need to take
$$\langle \mathcal{O}_{\Delta,\ell} \Phi_{\Delta_3}(X_3) \mathcal{O}'_{\Delta',\ell'} \rangle \to \langle \mathcal{O}_{\Delta,\ell} v^A(X_3) \mathcal{O}'_{\Delta',\ell'} \rangle$$

■ Have 3 distinct classes of constituent 3-point structures:

$$Q_{(\ell,1,\ell')}(X_1,X_2,X_3;Z_1,Z_2,Z_3) = \sum_{i=1}^3 \lambda_{i,n_{IJ}} Q_{(\ell,1,\ell')}^{(i,n_{IJ})},$$

where

$$Q_{(\ell,1,\ell')}^{(i,n_{IJ})} = \frac{q_{(\ell,1,\ell')}^{(i,n_{IJ})}}{(X_{12})^{\frac{1}{2}(\Delta + \Delta_3 - \Delta' + \ell - \ell' + 1)} (X_{13})^{\frac{1}{2}(\Delta - \Delta_3 + \Delta' + \ell + \ell' - 1)} (X_{23})^{\frac{1}{2}(-\Delta + \Delta_3 + \Delta' - \ell + \ell' + 1)}}$$

with

$$\begin{split} & q_{(\ell,1,\ell')}^{(1,n_{IJ})} = V_1^{\ell-n_{IJ}} V_2 V_3^{\ell'-n_{IJ}} H_{13}^{n_{IJ}} \,, \\ & q_{(\ell,1,\ell')}^{(2,n_{IJ})} = V_1^{\ell-n_{IJ}} V_3^{(\ell'-1)-n_{IJ}} H_{13}^{n_{IJ}} H_{23} \,, \\ & q_{(\ell,1,\ell')}^{(3,n_{IJ})} = V_1^{(\ell-1)-n_{IJ}} V_3^{\ell'-n_{IJ}} H_{12} H_{13}^{n_{IJ}} \,. \end{split}$$

Remark:

- i = 1 exist for $n_{II} \in [0, \min(\ell, \ell')]$
- i = 2 exist for $n_{IJ} \in [0, \min(\ell, \ell' 1)]$
- i = 3 exist for $n_{IJ} \in [0, \min(\ell 1, \ell')]$

Consider the quantity

$$W_{\Delta,\ell;\Delta',\ell';\Delta_1,\Delta_2,\Delta_3,\Delta_4,\Delta_5}^{(V)(i,n_{IJ})} = \langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\mathcal{O}_{\Delta,\ell}\rangle \bowtie Q_{(\ell,1,\ell')}^{(i,n_{IJ})} \bowtie \langle \mathcal{O}'_{\Delta',\ell'}\phi_{\Delta_4}(X_4)\phi_{\Delta_5}(X_5)\rangle$$

- *i* enumerates the 3 distinct classes
- n_{IJ} parameterizes different possible structures within each class

Start by expressing
$$Q_{(\ell,1,\ell')}^{(i,n_{lJ})}$$
 for fixed i in terms of the basis $\{(\mathcal{D}_{X}^{(-0)}\cdot\mathcal{D}_{X_{3}}^{(0+)}),(\mathcal{D}_{X}^{(+0)}\cdot\mathcal{D}_{X_{3}}^{(0+)}),(\mathcal{D}_{X}^{(0-)}\cdot\mathcal{D}_{X_{3}}^{(0+)}),(\mathcal{D}_{X}^{(0+)}\cdot\mathcal{D}_{X_{3}}^{(0+)})\}$

for either
$$X = X_I$$
 or $X = X_J$

Here we

lacksquare Choose $\mathcal{D}_{X_3}^{(0+)}$ to raise spin of Φ_{Δ_3} to 1

For example, for $X = X_I$

$$\begin{split} (\mathcal{D}_{X_I}^{(-0)} \cdot \mathcal{D}_{X_3}^{(0+)}) \langle \mathcal{O}_{\Delta+1,\ell}(X_I) \Phi_{\Delta_3}(X_3) \mathcal{O}_{\Delta',\ell'}(X_J) \rangle^{(n_{IJ})} \\ = \alpha_1 Q_{(\ell,1,\ell')}^{(1,n_{IJ})} + \beta_1 Q_{(\ell,1,\ell')}^{(2,n_{IJ})} + \gamma_1 Q_{(\ell,1,\ell')}^{(3,n_{IJ})} \end{split}$$

Now, since only three distinct 3-point structures

 \Rightarrow just need three equations:

$$\{(\mathcal{D}_{X_{I}}^{(-0)}\cdot\mathcal{D}_{X_{3}}^{(0+)}),(\mathcal{D}_{X_{I}}^{(+0)}\cdot\mathcal{D}_{X_{3}}^{(0+)}),(\mathcal{D}_{X_{I}}^{(0-)}\cdot\mathcal{D}_{X_{3}}^{(0+)})\}$$

- reuse these multiple times to generate set involving $Q_{(\ell,1,\ell')}^{(i,n_{lJ}-1)}, Q_{(\ell,1,\ell')}^{(i,n_{lJ})}$, and $Q_{(\ell,1,\ell')}^{(i,n_{lJ}+1)}$
- then solve for structures

We next apply

- lacktriangle three-point crossing relation (a variety that holds ℓ fixed)
- integration-by-parts rule

to obtain a set of recursion relations for

$$W_{\Delta,\ell;\Delta',\ell';\Delta_1,\Delta_2,\Delta_3,\Delta_4,\Delta_5}^{(V)(i,n_{IJ})}, \qquad i=1,2,3$$

E.g.

$$\begin{split} W_{\Delta,\ell;\Delta',\ell';\Delta_{1},\Delta_{2},\Delta_{3},\Delta_{4},\Delta_{5}}^{(V)(2,\eta_{IJ})} &= \frac{(n_{IJ}-\ell)\left(n_{IJ}-\ell'+1\right)}{(n_{IJ}+1)\left(\Delta'-\Delta+\Delta_{3}-2n_{IJ}+\ell'+\ell-1\right)} W_{\Delta,\ell;\Delta',\ell';\Delta_{1},\Delta_{2},\Delta_{3},\Delta_{4},\Delta_{5}}^{(V)(2,\eta_{IJ}+1)} \\ &+ \sum_{m=n_{IJ}}^{n_{IJ}+2} \mathscr{B}_{(+0)(0+)}^{(1)(m)} (\mathcal{D}_{\chi_{1}}^{(+0)}\cdot\mathcal{D}_{\chi_{3}}^{(0+)}) W_{\Delta,\ell,\Delta',\ell';\Delta_{1}-1,\Delta_{2},\Delta_{3},\Delta_{4},\Delta_{5}}^{(m)} \\ &+ \mathscr{B}_{(+0)(0+)}^{(2)(m)} (\mathcal{D}_{\chi_{2}}^{(+0)}\cdot\mathcal{D}_{\chi_{3}}^{(0+)}) W_{\Delta,\ell,\Delta',\ell';\Delta_{1}-1,\Delta_{2}-1,\Delta_{3},\Delta_{4},\Delta_{5}}^{(m)} \\ &+ \mathscr{B}_{(-0)(0+)}^{(1)(m)} (\mathcal{D}_{\chi_{1}}^{(-0)}\cdot\mathcal{D}_{\chi_{3}}^{(0+)}) W_{\Delta,\ell,\Delta',\ell';\Delta_{1}+1,\Delta_{2},\Delta_{3},\Delta_{4},\Delta_{5}}^{(m)} \\ &+ \mathscr{B}_{(-0)(0+)}^{(2)(m)} (\mathcal{D}_{\chi_{2}}^{(-0)}\cdot\mathcal{D}_{\chi_{3}}^{(0+)}) W_{\Delta,\ell,\Delta',\ell';\Delta_{1},\Delta_{2}+1,\Delta_{3},\Delta_{4},\Delta_{5}}^{(m)} \end{split}$$

Comment on Spin 2 Promotion

To promote Φ_{Δ_3} to a spin-2 operator T^{AB} ,

- Follow exactly analogous procedure
- May recycle much of the spin-1 calculation
- Take $W^{(V)(i,n_{lJ})}_{\Delta,\ell;\Delta',\ell';\Delta_1,\Delta_2,\Delta_3,\Delta_4,\Delta_5}$ as the seed blocks

The Averaged Null Energy Condition (ANEC): An Application

All QFTs known to respect a special positivity condition:

averaged null energy condition (ANEC)

Hofman & Maldacena (2008), Faulkner et al. (2016), Hartman et al. (2016)

which states that the energy flux operator

$$\mathcal{E} = \int_{-\infty}^{\infty} dx^- \ T_{--}(x^-, 0),$$

where the integral is over a complete null line, satisfies

$$\langle \Psi | \mathcal{E} | \Psi \rangle \geq 0$$

We ask:

Can we get novel constraints on OPE coefficients by studying ANEC positivity in five-point functions?

The Averaged Null Energy Condition (ANEC): An Application (cont.)

Possible application of our results:

- May use the OPE to compute the expectation value of the ANEC operator in bilocal states $\phi(x_1)\phi(x_2)|0\rangle$, encoded in $\langle \phi_i\phi_j T^{\mu\nu}\phi_i\phi_j \rangle$ and demand positivity
- Expect OPE limit $x_{12}, x_{45} \rightarrow 0$ to be dominated by stress tensor or low-dimension scalars
- May consider smeared states of the form

$$|\phi_i\phi_j\rangle_f = \int d^dx_1 \int d^dx_2 \ f(x_1,x_2)\phi_i(x_1)\phi_j(x_2)|0\rangle$$

with f chosen to have support such that convergence of the $\phi_i \times \phi_i$ OPE is preserved

■ E.g. $f(x_1, x_2) \propto e^{-iq(t_1+t_2)}$ to correspond to approximate energy eigenstates

The Averaged Null Energy Condition (ANEC): An Application (cont.)

- May analyze more general mixed states created by linear combinations of operators
- E.g. consider mixing with a state

$$|T(q,\epsilon)\rangle = \mathcal{N} \int d^dx \ e^{-iqt} \epsilon_{\mu\nu} T^{\mu\nu}(x)|0\rangle$$

■ Mixed state $\alpha_1 |\phi_i \phi_i\rangle_f + \alpha_2 |T(q,\epsilon)\rangle$

Evaluating energy one-point function gives 2×2 matrix:

$$\begin{pmatrix} {}_{f}\langle\phi_{i}\phi_{j}|\mathcal{E}|\phi_{i}\phi_{j}\rangle_{f} & {}_{f}\langle\phi_{i}\phi_{j}|\mathcal{E}|T(q,\epsilon)\rangle\\ \langle T(q,\epsilon)|\mathcal{E}|\phi_{i}\phi_{j}\rangle_{f} & \langle T(q,\epsilon)|\mathcal{E}|T(q,\epsilon)\rangle \end{pmatrix} \geqslant 0$$

Require this to be positive-definite ⇒ stronger constraints

Ongoing Work: Moving Beyond 5-point Blocks

 Apply similar methods to determine 6-point blocks in the snowflake channel for scalar 6-point functions

$$G_{\Delta,\ell;\Delta',\ell';\Delta'',\ell''}^{(m)} \bigg|_{\text{snowflake}} \propto \langle \phi_{\Delta_1}(X_1)\phi_{\Delta_2}(X_2)\mathcal{O}_{\Delta,\ell} \rangle$$

$$\bowtie \langle \mathcal{O}_{\Delta,\ell}\mathcal{O}_{\Delta',\ell'}\mathcal{O}_{\Delta'',\ell''} \rangle^{(m)} \bowtie \langle \mathcal{O}_{\Delta',\ell'}\phi_{\Delta_3}(X_3)\phi_{\Delta_4}(X_4) \rangle$$

$$\bowtie \langle \mathcal{O}_{\Delta'',\ell''}\phi_{\Delta_5}(X_5)\phi_{\Delta_6}(X_6) \rangle$$

- Main difference: 3-point structure of type spin-spin-spin $\langle \mathcal{O}_{\Delta,\ell}\mathcal{O}_{\Delta',\ell'}\mathcal{O}_{\Delta'',\ell''}\rangle^{(m)}$
- \Rightarrow Consequence: Require differential operators $(\mathcal{D}_{X_1}^{(+0)}\cdot\mathcal{D}_{X_6}^{(-0)})$
- \Rightarrow Have two types of relations
 - One spin varying: with differential operators
 - **Two** spins varying: without differential operators
- → Multiple special cases

Ongoing Work: The 5-point Conformal Bootstrap

Goal: to implement the bootstrap on the 3D critical Ising model by using results for 5-point (and later 6-point) blocks Gliozzi (2013)

- E.g. $\langle \sigma(x_1)\sigma(x_2)\epsilon(x_3)\sigma(x_4)\sigma(x_5)\rangle$ can be expanded in the (12)(45) OPE, the (14)(25) OPE, the (13)(45) OPE
- Truncate the CFT at some level N by including the first N conformal blocks
- Apply a numerical bootstrap method to extract CFT data
- Only works for a truncable CFT limitation!
- Hope to obtain new OPE coefficients

Conclusions

- Presented a concrete and practical approach to computing general symmetric traceless exchange conformal blocks appearing in 5-point functions of arbitrary scalar operators
- Derived a simple set of recursion relations using the weight-shifting formalism
- Relations allow to reduce symmetric traceless blocks to linear combinations of scalar exchange blocks with shifted dimensions

Conclusions (cont.)

- Considered promoting one of the external operators to have spin 1 or 2
- Discussed one possible application of these results in deriving novel constraints from the ANEC in the context of 5-point functions
- Considered extending these methods to 6-point snowflake channel blocks
- Discussed ongoing efforts to implement 5-point bootstrap
- In future: May be interesting to generalize these methods to nontrivial exchanged representations

THANK YOU!