Recursion Relations for Five-Point
Conformal Blocks and Beyond: A Practical
Approach

Valentina Prilepina

April 20, 2022
Institute for Theoretical and Mathematical Physics (ITMP)
based on
arXiv:2103.12092 [hep-ph]

with David Poland and ongoing work with Petar Tadic


https://arxiv.org/pdf/2103.12092.pdf

Why Study Conformal Field Theories (CFTs)?

CFTs describe universal physics of scale invariant critical points:
m continuous phase transitions in condensed matter and
statistical physics systems

m fixed points of RG flows

Provide a handle on
m Universal structure of the landscape of QFTs
m Quantum gravity via the AdS/CFT correspondence and
holography
m String theory

m Black holes



The Conformal Bootstrap

Conformal bootstrap program seeks to systematically apply
m conformal symmetry
B crossing symmetry
m unitarity/reflection positivity

to map out and solve the space of allowed CFTs
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Figure: Upper bound on A, as a function of A, in 3d CFTs [El-Showk,
Paulos, Poland, Rychkov, Simmons-Duffin, Vichi, '12; '14]



The Ultimate Dream

m Owing to bootstrap: tremendous progress on the numerical
and analytic fronts! eg Ferrara et al. (1971, 1073), Dobrev et al. (1976, 1977), Polyakov
(1974), Dolan & Osborn (2001, 2004, 2011), Poland et al. (2012), Simmons-Duffin (2014), El-Showk et
al. (2014), Kos et al. (2014, 2015, 2016), Costa & Hansen (2015), Rejon-Barrera & Robbins (2016),
Echeverri et al. (2016), Costa et al. (2016), Fortin & Skiba (2016, 2019), Karateev et al. (2017), Poland

& Simmons-Duffin (2019)

m Dream: to classify and solve the entire landscape of CFTs and
predict their observables

CFTs are signposts in the landscape of QFTs!
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Motivation for Studying Higher-Point Functions

So far, most results extracted by considering 4-point functions!

(for a review, see e.g. Poland, Rychkov and Vichi (2019))

= Explicit expressions or recursion relations for conformal blocks
appearing in 4-point functions of scalars in arbitrary d

= Rich variety of techniques for handling 4-point blocks in
arbitrary Lorentz representations



Motivation for Studying Higher-Point Functions (cont.)

Many reasons to desire a precise understanding of 5- and
higher-point functions!

Multipoint bootstrap Rosenhaus (2018), Parikh (2019), Bercini et al. (2021), Antunes et
al. (2021)

Better access to different physical regimes of a CFT

New probe into (OyOyOp) in holographic CFTs via 5-point
object <OLOLOHOLOL>

Improved understanding of CFT implications of the ANEC



What is Known So Far

A few key developments include

m Five-point scalar exchange conformal blocks first computed by
Rosenhaus (2018)

m Holographic representations of higher-point conformal blocks
constructed by Parikh (2019, 2020) and Hoback and Parikh
(2021)

m Dimensional reduction formulae for higher-point scalar
exchange blocks derived by Hoback and Parikh (2020)

m General representations of higher-point scalar exchange blocks
developed by Fortin, Ma, Skiba (2019, 2020) using the
operator product expansion (OPE) in embedding space



What is Known So Far (cont.)

m Few explicit results for higher-point conformal blocks
capturing exchange of spinning operators exist

m Exception: Series expansion for general 5-point blocks with
identical external scalars developed by Gongalves et al. (2019)

m Lightcone blocks for five- and six-point functions in the
snowflake channel obtained by Antunes et al. (2021)

m Multipoint comb channel blocks obtained in 3D and 4D via a
connection to Gaudin integrable models by Buric et al. (2021)



Goal of this Work

Here we seek to

m Identify a simple and practical approach to computing 5-point
blocks

m Improve and extend our understanding of 5-point blocks by
deriving simple recursion relations

We
m Consider scalar 5-point function (pa, 0, PasPn,dns)
m Compute the conformal block for arbitrary symmetric traceless
tensor exchange in (12) and (45) OPEs
Our results

m May be seen as a natural generalization of recursion relations
for 4-point blocks obtained by Dolan & Osborn (2011)



Setting the Stage: 5-point Functions

m Work in the index-free embedding formalism of Costa et al.
(2011)

m Restrict to parity-even correlators only

m Label spin-¢ primaries by x = [A, /]

Conformal invariance fixes 5-point function of spin-£ primaries to
have the form

(01(X1; Z1) -+ O5(Xs; Zs)) Hx “"ka u) QY (X Zi),

i<j

where Xj; = —2X; - X; and

1 1<
a,-j—3<7',-+7j—4;7'k>

with 77 = A; + ¢;



Setting the Stage: 5-point Functions (cont.)

In this form,

m Factors Xj; carry powers fixed by homogeneity
m fi(u,) is some function of the conformal cross-ratios u,

m Polynomials Q(%) have weight ¢; in each point X;, degree ¢; in
each Z;

m Q) must be identically transverse, i.e.
le(’),,,,x_r,({)\ixi; a;Zi + BiXi}) = QQI?,_,7X5({X,'; Zi}) H (Niaj)

Q%) constructed from basic building blocks
m Vi
] H,'J'

of the standard box tensor basis



Setting the Stage: 5-point Conformal Blocks

May expand ), [ . ] in a basis of conformal blocks, which

m Capture the exchange of specific primary operators in the
OPE

m Are the building blocks of CFT correlation functions

m Effectively encode the kinematical contribution of descendant
operators in terms of primary operators

Choose to compute blocks in double OPE channel (12)(45)



Setting the Stage: 5-point Conformal Blocks (cont.)

Consider the scalar 5-point function

(D, (X1)Pn,(X2)Pas(X3)Pn,(Xa)das (X5))

m Insert a projector |Oa ¢| onto the conformal multiplet of Oa ¢
(similarly for O’y, ;) into the 5-point function

0] = A}O / DYX|0(X))(G(X)|

m Each 3-point function (Oa (®a, O ;) expanded in a basis of
tensor structures

m Tensor structures labeled by index a

. . . R
m Each comes with an independent coefficient )\OA,Z¢A3O

/
A



Setting the Stage: 5-point Conformal Blocks (cont.)

This gives

(0, (X1)D8,(X2)|On 6| P a;(X3)|Opr p|ba, (Xa)pns (Xs)) =

a (a) .
Z )\¢A1¢A20A,2)\0A7[¢A30'A,‘é, )\¢A4¢A5O,A/76, WA,E,A’,Z’;A;(XI) )
a

where ) )
WAa,e,A',z';A,(Xi) = PA;(XI')GAa,Z,A’,Z’(ui)

The object WX?% A, (Xi) is comprised of

m external-dimension-dependent prefactor Pa,(X;)

m 5-point conformal block for arbitrary symmetric traceless
exchange [A, /], [A, /] G(A‘?,)Z,A’,E’(uf)



Setting the Stage: 5-point Conformal Blocks (cont.)

In 5-point case,

m There are generically five independent conformal cross-ratios
u; ford >3

m Can make different choices of basis for u;

m Multiple forms for Pa,(X;) exist



Our Conventions

Various conventions for the leg factor and cross-ratios exist in the
literature, e.g. in Parikh (2019)

[ A5 [Lv3 Az By
- (75)" (25" (%) ()" ()’
AR XisXna X15Xas X12X25 X13 X35 X14Xas ’

where

_ X12X35 = X13Xas Was = Xi5X23 Waa — Xi5Xo4 e — Xi5 X34
Xo5X13” X35X14” ' Xos X13” ' Xos X1a” ' X35 X14

uy

= Here we choose to work in a convention-independent way as
much as possible.



How to Compute the Blocks?

Some prominent methods for computing conformal blocks are
m Conformal integral approach (e.g. Dolan & Osborn (2001, 2004),
Simmons-Duffin (2012))

m Conformal Casimir equation (e.g. Dolan & Osborn (2004, 2011),
Isachenkov & V. Schomerus (2016), Kravchuk (2018))

m Weight-Shifting operator formalism (e.g. Karateev et al. (2017),
Costa & Hansen (2018), Kravchuk & Simmons-Duffin (2018), Karateev
et. al. (2018), Albayrak et. al. (2020))

We choose the weight-shifting formalism, which
m Empowers us to derive a set of recursion relations for
. G(a) X

generating Gp'y as (i)



The Weight-Shifting Operator Formalism

This formalism (due to Karateev et al. (2017) ) introduces a

m Large class of conformally-covariant differential operators

= These operators may be used to relate correlation functions of
operators in different representations of the conformal group

= Method enables determination of seed conformal blocks as
well as more general blocks

= Allows for efficient derivation of recursion relations



The Weight-Shifting Operators

Weight-Shifting operators
= Correspond to tensor products of different finite-dimensional
representations W

Each set {D&V)A} associated with a particular W

m A=1,...,dimW is an index for W

v refers to a weight vector of W

E.g. YW may be the fundamental vector representation
WwW=y=0



The Weight-Shifting Operators (cont.)

In particular,

s DA [A, p] — [A — JA,, ] associated with W for generic
A are in one-to-one correspondence with irreducible
components of W* ® Va ,

where Vp , is the representation under which O(x) transforms

= Action of D\ on O(x): to shift the weights of O by the
weights of v, while introducing a free A index

For example, to increase or decrease the spin or dimension of O



The Weight-Shifting Operators (cont.)

m May construct such operators explicitly in the embedding
space formalism

m Focus on case of symmetric traceless tensors of SO(d)

(3, 6Z)A}

For vector representation YW =V, can build {D which map

DO (A - [A-1,1,

DDA (A, A0+ 1],
DO (A0 = [A, 1],
DU A ] = [A+1,1.



Crossing Relations for Weight-Shifting Operators

A crucial aspect is that
m Such operators obey a type of crossing relation

m Comes in two varieties: two- and three-point

m Role: to relate action of weight-shifting operators at different
points

Symbolize a weight-shifting differential operator by
(/)/

DA = W (1)



2-point Crossing Relation

Represent a conformally-invariant 2-point structure by
(01(X1)02(X2)) = O ———— 0,

Acting with a weight-shifting operator on (O1(X1)O2(Xz2)) gives a
crossing relation

O OT
o ? o - {8} o % o
w )4%

which corresponds to

D&T)Ap(xl)(’)(xg)) = {0,}( , pggv)Ap/(xl)o/(Xz))

where m denotes shift opposite to m



3-point Crossing Relation

Represent a conformally invariant 3-point structure by the vertex

(@7

(01(X1)02(%2) 03(X3))?) = O;

O1

where a enumerates all singlets in (p1 ® p2 ® p3)50(d_1)



3-point Crossing Relation (cont.)

Again, acting on (O1(X1)02(X2)O3(X3))(@) with a weight-shifting
operator gives a crossing relation

(92 03

o1 w
which corresponds to

DI04 (X1) 02(X2) O4(Xs)) @

7y (@) (m)
O 0. O n /
- {0 W 8, Peiaeeao
Of,b,n (b)(n)

= Coefficients — Racah coefficients or 6j symbols



3-point Crossing Relation (cont.)

Three-point crossing relation is

= Effectively a change-of-basis equation between different bases
of covariant 3-point structures

m Bases generated by the action of a weight-shifting operator at
a given point Xj or X3

m Sum over O’l is finite, ranging over the operators in 01 @ W

m Relation reduces to 2-point variety if Oy =1

= Relation empowers us to move weight-shifting operators from
one leg (operator) to another

= Main computational tool in the formalism!



Bubble Coefficients

If we contract both sides of the 3-point relation D%)A, find

DD 01(X1) 0 (X) O5(X6))

01 0 O\ ) oy ®)
=D 10, w ol DRaDNO1X)02(%)05(X))
O b,p 3) (b)(p)

= RHS features two contracted weight-shifting operators acting
at the same point!



Bubble Coefficients (cont.)

m Composition D%)AD%)A corresponds to a bubble diagram:

01
(n)(p)
(n) ~PA _ _ 1
Dy AP = 0, w = <(91 %/V> doj0y
(n)

"
o1



Gluing 3-point Functions to Form Conformal Blocks

Standard way to encode a conformal block:

m Conformal integral of product of 3-point functions

E.g. scalar exchange block in a purely scalar 4-point function has
the form

1 1
o /DdXDdY<¢A1(X1)¢A2(X2)O(X)>W<0(Y)¢A3(X3)¢A4(X4)>
with M = e?™% denoting the projection onto the appropriate

monodromy invariant subspace



Gluing 3-point Functions to Form Conformal Blocks (cont.)

In the weight-shifting formalism (karateev et al. (2017) ),

m Operation which “glues” the 3-point correlators

(9, (X1)9a,(X2)O(X)) and (O(Y)da,(X3)Pa,(Xa))
together

Symbolized by
10) i (O] = J\}o /DdXDdY|(’)(X)>

= O -r-X-x- 0

For spinning operators,

m Op , to be glued to representation with which it has a
nonvanishing 2-point function



Gluing 3-point Functions to Form Conformal Blocks (cont.)

In terms of this notation, a general 4-point conformal block is
given by




General Strategy

Our overall strategy involves

= Acting with specific combinations of weight-shifting operators
on a given conformal block

= Then applying the two- and three- point crossing relations as
needed

Goal: to re-express the original block in terms of

m linear combinations of lower-spin blocks with shifted external
and, potentially, exchanged dimensions



General Strategy (cont.)

m To implement such forms, require a mechanism for integrating
by parts

This is the statement
«(c)

c of 1 of m
P00 = {0y B 101 (im0
m «(m)

m Empowers us to move the weight-shifting operators from one
side of the >x to the other!



Recursion Relations from Weight-Shifting Operators:

Four-Point Case

Describe the basic procedure for extracting recursion relations:

m Four-point scalar conformal blocks defined as

1

(Xi2)2(A1+02) (X3, ) (83 +20)

X24 A12/2 X14 A34/2
il Zu G
x (X14) X13 a.e(u;v),

m Act on this object with the combination of operators
2D DY) = —2X - X4 = Xug

(a1 (X1)9Pa,(X2)|On,e|Pas (X3)Pa,(Xa)) =

where A,‘j = A,‘ — Aj



Recursion Relations from Weight-Shifting Operators:

Four-Point Case (cont.)

m Gives a 4-point function with A; — A; —1and Ay — Ay —1
m Shifts in A; and A4 = a shifted external prefactor

m Absorb it into y~1/2
Next, apply
= three-point crossing relation

= integration-by-parts rule

In three-point rule, sum over

O8[A=[A-10&[Al+1]B[A-1S[A+1,0+....



Recursion Relations from Weight-Shifting Operators:

Four-Point Case (cont.)

Result is the familiar recursion relation due to Dolan and Osborn:

1 _
Gae(u,v) = 5 (U Y2Gae-1(u, v) = Ga-1,0-1(u, v)

s(14)
A1 —A1+1,A4— D +1

19 Ga,e—2(u, v) — ut® Gat1,e—1(u, V))

= This is Eq. (4.18) in Dolan & Osborn (2011)

Now wish to generalize this analysis to 5-point functions!



Mapping out the Derivation of the 5-point Recursion

Relations

Basic idea: to express 5-point conformal block for ([A,¢], [A', ¢])
exchange in terms of lower-spin blocks

m As before, act on 5-point function

(9, (X1)Pn,(X2)|On £| a5 (X3)|Ops o1 |Da, (Xa)pag (Xs))
= (9, (X1)¢n,(X2)On,e) D4 (On, 0@y (X3)Ops 41) D {Ops g, (Xa)Pas (Xs))

_ a (a) :
- Z Z Z )\¢A1 ‘bAzoAl)‘@A,z@%O’A/ o A¢A44’A5 Opr o WA,Z,A’,E’;A,‘(X’)
a OA,E O/A/ Y '

With weight-shifting operator combination

—2(D§ DY) (D, (%) D0, (%)|On 0| ®a,(X5) [ Opr s |68, (Xa)Dng (X5))
= X13(¢n, (X1)90,(X2)|Oa,e|P a3 (X3)|Onr 4 |Pn, (Xa)Pas (X))



Mapping out the Derivation of the 5-point Recursion

Relations (cont.)

Consider
(60,(X1)$0,(X2)On.e) 54 (On,e Py (Xs) O or) 1 (Or o Py (Xa) Pns (Xs))

Apply three-point crossing relation to (¢a,(X1)Pa,(X2)Ona r):

DY (68, (X1) 0, (X2)On 0 (X)) = AL DYV (G, -1(X1) b, (X2) O 1,6(X1))
+AGOIDE M (Ga,-1(X0)0a, (X2) O, e01(X))
+A(o+) X, D Gay-1(X1)68, (X2)On e-1(X1))
+A YD (Dns1(X0) 0, (X0) O e (X))

May extract 6 symbols AE;) ) by

m Acting on both sides with DEZ)A (7 has shift opposite to n)

m Noting J only one nonzero bubble coefficient on RHS

m Isolating A(n)



Mapping out the Derivation of the 5-point Recursion

Relations (cont.)

Next step is

m To push each of the operators DEZ)A through the shadow

integral

)A

For this, invoke integration-by-parts rule to move Dgg across !

m For example, for D&TO)A

\D&TO)AOAA,Z) > (Oa | = B10)(=0)|Oa-1,¢) >4 (D&TO)AOA,A



Mapping out the Derivation of the 5-point Recursion

Relations (cont.)

At this point, arrive at

DY (6, (X)éa, (%) O, 0(X)) 5 (O e (X1)®a; (X3)Ops 41 (X)) =

AL Bro -0y (#a; —1(X)6a,00)0a _1,0(X)) 5 DY O (On £ (X1)0 5, (X6)Os s (X))

+-AEO_,0;B(07)(O+)<¢A1—1(X1)¢A2(XZ)OA,Z+1(XI)> > DE?I+)A<OA,Z(XI)¢A3 (X3)Ops o1 NS
+AG B0 s0- ) (#a,100)68,R)0a,—1(X1)) 50 DY TMON (X)) 025 (X3)O s 41 (X))

+AE:ggB(—o)(+o)<¢A171(X1)¢A2(X2)0A+1,2(X/)> > DE(TD)A<OA,Z(XI)¢A3 (X3)Ops 1 x,)n®
Next apply the three-point relation again!

= Purpose: to move the action of D%)A from the internal point
X; to the external point X3!

m Shifts [A3 — §A,, —6¢,] take on values in
O®[As3,0] = [A3 —1,0] & [A3,1] © [As3 + 1,0]



Mapping out the Derivation of the 5-point Recursion

Relations (cont.)

At this stage, recall that

(] D&ZO)A is contracted with Dg(goA) in our combination of choice

= So all bubble coefficients on RHS vanish except for one,
PO p(H0)A
X3 A X;

m Label a enumerates constituent 3-point tensor structures of
<0A,£¢A3O/A/7£/>' |e <0A,Z¢A3O/A/’£/>(a)

m Parameterize structures by the index njy: 0 < njy < min(¢, )



Mapping out the Derivation of the 5-point Recursion

Relations (cont.)

Extracting relevant 6j symbols and combining everything, obtain

(=0) . 0) (n1y) _
_2(DX1 )WA LA A Do A3 Ay, Ay T
(—0)(+0) [ 4(—=0) 11y (—=0) 4 /(n1y)
— 2b,, "4(+0) B(+0)(—0)Bn,1(+0) WA 1,6,A7 0701 —1,00,A3—1,04,A5
LN (©04) yy(m)
nU 0+ myy
+ Z 'A Bo-)o+) mU(+0)WA,Z+1,A’,Z’;A1—1,A2,A3—1,A4,A5
myy=nyy
Sy (0-) ()
niy(0 myy
+ Z 'Ao+ (0+)(0— m,_,(+0)WA,Z—l,A’,Z’;Al—I,AZ,A3—1,A4,A5
myy=nyy—1

nyy+2
(= ) "/J(+0) (myy)
+ 2 A0 B-o)+0) mu(+0)WA+1,2,A',Z’:Al—l,Az,As—l,m,As)
myy=n;y—1



Mapping out the Derivation of the 5-point Recursion

Relations (cont.)

= Evidently a recursion relation in spin £, with ¢’ held fixed!
Next apply analogous approach to the other spin:

—2(DY, Y D) (0, (X1) b, (X2) O 0@ a, (X6)| O 1|68, (Xa) by (X))
= X35(pn, (X1)90,(X2)|On,e|® a3 (X3)|Ops 4 |6n, (Xa)Pas (Xs))

Mirror image of the above procedure with
B A A
il
B Ap — —Aygs



Main Results

For convenience, adopt shorthand notation

(n) — c .
(6,¢:80,50) — GA+50,Z,A’+56,Z/(U’)

Shifting A3 - A3+ 1, and Ay - A1 +1, £ —£0—1; As - As+1, ¢ — ¢ —1,
obtain the set

1 +1
(1) G((%/)-o [ (f(”f)G((;lii £/:0,0) - G((lf”ji ¢,—1,0) ~ Sny+l G((Zlé'-o )o)
e Snyy T AL AL +1,A3 A+ T B
-1 +1
_t"u—lc((zlfz,el);o,o) — ty G((;If%,e';o,o) - t"u+1G((;LJz,22;o,o)
(nyy—1) (n1y) (ny+1) (niy42)
_U"IJflc(;lle,l’;l,O) — Uny G(énLJl,Z’;l,O) = Uny+1 G(Zrlgl,é’;l,o) — Uny+2 G(;LJI,Z’;I,O))
and
) _ X (gt (m) / (ny+1)
(2) G(e,%/;o,o) - 5/7 (f (”')G(z,’é/—l;o,o) - G(e,liz’/—1;o,_1) = S+l G(z,lél;o,o)
nyy A3 —A3+1,A5—A5+1

4 (ny—1) _ 4 () 4 (nyy+1)
tﬂu—l (¢,¢’ —2;0,0) t"uG(Z,Z’—2;0,O) t"lJ+1G(l,€’—2;0,O)

o (n1y—1) () o (ny+1) o (n1y+2)
Uny—19(e,07~1,0,1) ”nuG(e,z'—1;o,1) ”nu+IG(z,e'—1;o,1) ”nu+2G(e,z'—1;o,1)



Discussion of Results

Relations defined in a convention-independent way:
m f(u;) and f'(u;) represent cross-ratio-dependent prefactors

m e.g. for the set of conventions in Parikh (2019)
Flu) = (u)™2 Fu) = (1)
m Coefficients — products of the various 6j symbols

May regard above relations as two independent results:

m One re-expresses a block for [A, 7], [A’, ¢'] exchange in terms
of {(£,0), ((—1,0), ((—2,0")}

m The other does the same for ¢/, with ¢ held fixed



Discussion of Results (cont.)

Remark: All terms on RHS have lower spins except

/
W sp,+1and s, g

But these have a larger 3-point structure index, n;; + 1 and vanish
only

B Sp,+1: at maximum value njy = min(¢ — 1,¢') = ¢ for ¢/ < {
W s, g0 at maximum value njy = min(4, ¢’ — 1) = £ for £ < V'

Observe: Case £ = ¢’ and n;; = £ — 1 missing here

m Need additional relation for this!



Discussion of Results (cont.)

Hence, generate the blocks as follows:

m If ¢/ < ¢, start from the seed nj; = ¢’ and iterate (1) until
0>
m If £ < ¢, start from the seed n;; = ¢ and iterate (2) until
>0
m If ¢/ =70 and njy =/ — 1, use special recursion relation
(combine with action of —2(D§go) -D&;O)))
Thus, can use these relations together

= to recursively generate 5-point conformal blocks for arbitrary
[¢,¢'] exchange, starting from the seeds ¢/ = ¢' =0

To sum up:

m Given an explicit prescription for arbitrary [¢, ¢'] exchange
5-point blocks



Promoting ®, to a Spinning Operator: Spin 1

Seek to promote the middle operator ®, to a spinning operator

m Simplest case: ® 4, to vector operator

Goal:

m To cast (Oa, O/ 1) exchange block in terms of seed blocks
for purely scalar 5-point function
In

(P, (X1)Pa, (X2)On,e) b (On,e®n; (X3)Onr o) 2 (Onr o g (Xa) P (Xs))

Need to take (Op ¢ ®n;(X3)Ops pr) = (On v (X3) O/ p)



Promoting ®a, to a Spinning Operator: Spin 1 (cont.)

m Have 3 distinct classes of constituent 3-point structures:

3
Qupe (X1, Xo, X3: 21, 22, Z3) = Y Aiimy Q((,fflé/)) ;

i=1
where
(i,n1y)
Q iny) q(é,l,é’)
(.10 = Latas—nrto—41) [N NEUNEV I [N AT
(X12)2 (X13)2 (X23)2
with
(L,ny) _ yl=n 2 —npy yn
q(l,l,%') = VTV VE T
2, l— o —1)—
R
(3,ny) _ \,(€=1)—n o —n n
q(é,l,%’) =V PVy T HH
Remark:

m i =1 exist for n;; € [0, min(¢, £')]
m | =2 exist for nj; € [0, min(¢, ¢/ — 1)]
m i = 3 exist for nj; € [0, min(¢ —1,¢')]



Promoting ®a, to a Spinning Operator: Spin 1 (cont.)

Consider the quantity

WL DO st i ey = (B8 (X0) 00, (X2)On ) 0 QU1 5 (O 1 by (Xe)brg (X))

m / enumerates the 3 distinct classes

m ny; parameterizes different possible structures within each
class

Start by expressing QU (¢ ;’2,) for fixed i in terms of the basis

{(,D —-0) D(O+)),(D§<+O) ,D0+)) (D(O ) D(0+)) (D(0+) Dgg—‘r))}

for either X = Xj or X = X}



Promoting ®a, to a Spinning Operator: Spin 1 (cont.)

Here we

m Choose Dg?;r) to raise spin of ¥, to 1

For example, for X = X,

(DS DN ON1.6(X1) Py (X3)Onr,0r (X)) W)

= a1 Q1) +B1QG T + QG T

Now, since only three distinct 3-point structures
= just need three equations:
-0 0+) (40 0+ 0— 0+
100G, (0 D), (07 - D)
[ reuse these multiple times to generate set involving

i,ny—1) (i) (i,ny+1)
Qrin Y Q). and QY

m then solve for structures



Promoting ®a, to a Spinning Operator: Spin 1 (cont.)

We next apply
m three-point crossing relation (a variety that holds ¢ fixed)
m integration-by-parts rule

to obtain a set of recursion relations for

(V)(i,m) o
B WA AT Ay Ay As A A =123
Eg.

W)@ ny) _ (ny =) (ny — ¢ +1) (V)(2,np5+1)
A GA LAY B A3, 0,85 T (n); 1)( P A+ A3 — 20+ 0 40— 1) ALALIALAY A3 A A

(1)( m) D) | p0+)yyy,(m)
+m§; % +0)( X1 " Dx. )WA,E,A’,e’;Al—l,Az,A3,A4,A5
]

(2)(m) (+0) | p(0+)y 1,/ (m)
'*'53(+0)(0+)(D " Px )WA,E,A’,E’;Al,Az—l,A3,A4,A5

(1)(m) (0+) (m)
+ 33( 0)(0+) (D DX3 )WA A7 0 0141,09 03,04, A5

(2)(m) (=0) (0+) (m)
‘@( )(0+)(D DX )WA €,07,0" A1, Ap+1,A3,0q, A5



Comment on Spin 2 Promotion

To promote ® 4, to a spin-2 operator TAB,
m Follow exactly analogous procedure

m May recycle much of the spin-1 calculation

(V)(ini)
m Take WA,E;A',@;AI,A2,A3,A4,A5 as the seed blocks



The Averaged Null Energy Condition (ANEC): An

Application

All QFTs known to respect a special positivity condition:

m averaged null energy condition (ANEC)

Hofman & Maldacena (2008), Faulkner et al. (2016), Hartman et al. (2016)

which states that the energy flux operator
oo
& :/ dx~ T__(x,0),
—0o0
where the integral is over a complete null line, satisfies
(VIEW) =0

We ask:

m Can we get novel constraints on OPE coefficients by studying
ANEC positivity in five-point functions?



The Averaged Null Energy Condition (ANEC): An

Application (cont.)

Possible application of our results:

m May use the OPE to compute the expectation value of the
ANEC operator in bilocal states ¢(x1)®(x2)|0), encoded in
(pidj TH ¢i¢j) and demand positivity

m Expect OPE limit x12, x45 — 0 to be dominated by stress
tensor or low-dimension scalars

m May consider smeared states of the form

|pidj)F = /ddX1 /ddxz f(x1, x2)9i(x1)d;(x2)[0)

with f chosen to have support such that convergence of the
¢;i x ¢; OPE is preserved

m E.g f(x1,x) oc e @ttt to correspond to approximate
energy eigenstates

Cordova et al. (2017), Meltzer et al. (2018)



The Averaged Null Energy Condition (ANEC): An

Application (cont.)

m May analyze more general mixed states created by linear
combinations of operators

m E.g. consider mixing with a state
T(q, ) = N / dx e, T (x)[0)

m Mixed state ai|pi¢j)r + 2| T(q,€))
Evaluating energy one-point function gives 2 x 2 matrix:

< F(QidjIE1dids e £(Didj|EI T(q,€)) > 0
(T(q.¢)|Elpidj) e (T(q,€)|EIT(q,e))

Require this to be positive-definite = stronger constraints



Ongoing Work: Moving Beyond 5-point Blocks

m Apply similar methods to determine 6-point blocks in the
snowflake channel for scalar 6-point functions

Gg,ne);A',e';A",e" o (P, (X1)Pn,(X2)On )

snowflake

D> (OA,EOA',Z'OA",@/)('") > (Oar 0 s (X3)Pn,(Xa))
>t (Opr o1 d s (Xs5)Png(Xs))

m Main difference: 3-point structure of type spin-spin-spin
(OnOnr 4 Oprm pr) (™)
= Consequence: Require differential operators (Dg:lro) -D&;O))
= Have two types of relations

m One spin varying: with differential operators
m Two spins varying: without differential operators

= Multiple special cases



Ongoing Work: The 5-point Conformal Bootstrap

Goal: to implement the bootstrap on the 3D critical Ising model by
using results for 5-point (and later 6-point) blocks Giozi (2013)

m Eg. (0(x1)o(x2)e(x3)o(xa)o(xs)) can be expanded in the
(12)(45) OPE, the (14)(25) OPE, the (13)(45) OPE

m Truncate the CFT at some level N by including the first N
conformal blocks

m Apply a numerical bootstrap method to extract CFT data
m Only works for a truncable CFT - limitation!

m Hope to obtain new OPE coefficients



Conclusions

m Presented a concrete and practical approach to computing
general symmetric traceless exchange conformal blocks
appearing in 5-point functions of arbitrary scalar operators

m Derived a simple set of recursion relations using the
weight-shifting formalism

m Relations allow to reduce symmetric traceless blocks to linear
combinations of scalar exchange blocks with shifted
dimensions



Conclusions (cont.)

m Considered promoting one of the external operators to have
spin 1 or 2

m Discussed one possible application of these results in deriving
novel constraints from the ANEC in the context of 5-point
functions

m Considered extending these methods to 6-point snowflake
channel blocks

m Discussed ongoing efforts to implement 5-point bootstrap

m In future: May be interesting to generalize these methods to
nontrivial exchanged representations



THANK YOU!



